Provides a table-like interface to select/insert files in [Amazon S3](https://aws.amazon.com/s3/) and [Google Cloud Storage](https://cloud.google.com/storage/). This table function is similar to the [hdfs function](../../sql-reference/table-functions/hdfs.md), but provides S3-specific features.
If you have multiple replicas in your cluster, you can use the [s3Cluster function](../../sql-reference/table-functions/s3Cluster.md) instead to parallelize inserts.
When using the `s3 table function` with [`INSERT INTO...SELECT`](../../sql-reference/statements/insert-into#inserting-the-results-of-select), data is read and inserted in a streaming fashion. Only a few blocks of data reside in memory while the blocks are continuously read from S3 and pushed into the destination table.
The S3 Table Function integrates with Google Cloud Storage by using the GCS XML API and HMAC keys. See the [Google interoperability docs]( https://cloud.google.com/storage/docs/interoperability) for more details about the endpoint and HMAC.
For GCS, substitute your HMAC key and HMAC secret where you see `aws_access_key_id` and `aws_secret_access_key`.
-`path` — Bucket url with path to file. Supports following wildcards in readonly mode: `*`, `**`, `?`, `{abc,def}` and `{N..M}` where `N`, `M` — numbers, `'abc'`, `'def'` — strings. For more information see [here](../../engines/table-engines/integrations/s3.md#wildcards-in-path).
-`format` — The [format](../../interfaces/formats.md#formats) of the file.
-`structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`.
-`compression` — Parameter is optional. Supported values: `none`, `gzip/gz`, `brotli/br`, `xz/LZMA`, `zstd/zst`. By default, it will autodetect compression by file extension.
ClickHouse uses filename extensions to determine the format of the data. For example, we could have run the previous command without the `CSVWithNames`:
ClickHouse also can determine the compression of the file. For example, if the file was zipped up with a `.csv.gz` extension, ClickHouse would decompress the file automatically.
FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/{some,another}_prefix/some_file_{1..3}.csv', 'CSV', 'name String, value UInt32')
INSERT INTO FUNCTION s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
INSERT INTO FUNCTION s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
Glob ** can be used for recursive directory traversal. Consider the below example, it will fetch all files from `my-test-bucket-768` directory recursively:
``` sql
SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**', 'CSV', 'name String, value UInt32', 'gzip');
```
The below get data from all `test-data.csv.gz` files from any folder inside `my-test-bucket` directory recursively:
``` sql
SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip');
The URL `'s3://clickhouse-public-datasets/my-test-bucket-768/**/test-data.csv.gz'` would be replaced to `'http://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**/test-data.csv.gz'`
If you specify `PARTITION BY` expression when inserting data into `S3` table, a separate file is created for each partition value. Splitting the data into separate files helps to improve reading operations efficiency.
- [s3_truncate_on_insert](/docs/en/operations/settings/settings.md#s3_truncate_on_insert) - allows to truncate file before insert into it. Disabled by default.
- [s3_create_multiple_files](/docs/en/operations/settings/settings.md#s3_allow_create_multiple_files) - allows to create a new file on each insert if format has suffix. Disabled by default.
- [s3_skip_empty_files](/docs/en/operations/settings/settings.md#s3_skip_empty_files) - allows to skip empty files while reading. Disabled by default.