ClickHouse/docs/ru/sql-reference/aggregate-functions/reference/timeseriesgroupsum.md

60 lines
2.3 KiB
Markdown
Raw Normal View History

---
toc_priority: 170
---
# timeSeriesGroupSum {#agg-function-timeseriesgroupsum}
Синтаксис: `timeSeriesGroupSum(uid, timestamp, value)`
`timeSeriesGroupSum` агрегирует временные ряды в которых не совпадают моменты.
Функция использует линейную интерполяцию между двумя значениями времени, а затем суммирует значения для одного и того же момента (как измеренные так и интерполированные) по всем рядам.
- `uid` уникальный идентификатор временного ряда, `UInt64`.
- `timestamp` имеет тип `Int64` чтобы можно было учитывать милли и микросекунды.
- `value` представляет собой значение метрики.
Функция возвращает массив кортежей с парами `(timestamp, aggregated_value)`.
Временные ряды должны быть отсортированы по возрастанию `timestamp`.
Пример:
``` text
┌─uid─┬─timestamp─┬─value─┐
│ 1 │ 2 │ 0.2 │
│ 1 │ 7 │ 0.7 │
│ 1 │ 12 │ 1.2 │
│ 1 │ 17 │ 1.7 │
│ 1 │ 25 │ 2.5 │
│ 2 │ 3 │ 0.6 │
│ 2 │ 8 │ 1.6 │
│ 2 │ 12 │ 2.4 │
│ 2 │ 18 │ 3.6 │
│ 2 │ 24 │ 4.8 │
└─────┴───────────┴───────┘
```
``` sql
CREATE TABLE time_series(
uid UInt64,
timestamp Int64,
value Float64
) ENGINE = Memory;
INSERT INTO time_series VALUES
(1,2,0.2),(1,7,0.7),(1,12,1.2),(1,17,1.7),(1,25,2.5),
(2,3,0.6),(2,8,1.6),(2,12,2.4),(2,18,3.6),(2,24,4.8);
SELECT timeSeriesGroupSum(uid, timestamp, value)
FROM (
SELECT * FROM time_series order by timestamp ASC
);
```
И результат будет:
``` text
[(2,0.2),(3,0.9),(7,2.1),(8,2.4),(12,3.6),(17,5.1),(18,5.4),(24,7.2),(25,2.5)]
```
[Оригинальная статья](https://clickhouse.tech/docs/en/sql-reference/aggregate-functions/reference/timeseriesgroupsum/) <!--hide-->