ClickHouse/src/Core/DecimalComparison.h

321 lines
11 KiB
C++
Raw Normal View History

#pragma once
#include <common/arithmeticOverflow.h>
#include <Core/Block.h>
#include <Core/AccurateComparison.h>
#include <Core/callOnTypeIndex.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnConst.h>
#include <Functions/FunctionHelpers.h> /// TODO Core should not depend on Functions
namespace DB
{
namespace ErrorCodes
{
2020-02-25 18:02:41 +00:00
extern const int LOGICAL_ERROR;
extern const int DECIMAL_OVERFLOW;
}
inline bool allowDecimalComparison(const DataTypePtr & left_type, const DataTypePtr & right_type)
{
if (isColumnedAsDecimal(left_type))
{
if (isColumnedAsDecimal(right_type) || isNotDecimalButComparableToDecimal(right_type))
return true;
}
else if (isNotDecimalButComparableToDecimal(left_type) && isColumnedAsDecimal(right_type))
{
return true;
}
return false;
}
2021-05-07 23:42:52 +00:00
template <size_t> struct ConstructDecInt;
template <> struct ConstructDecInt<1> { using Type = Int32; };
template <> struct ConstructDecInt<2> { using Type = Int32; };
template <> struct ConstructDecInt<4> { using Type = Int32; };
template <> struct ConstructDecInt<8> { using Type = Int64; };
template <> struct ConstructDecInt<16> { using Type = Int128; };
2021-05-07 23:42:52 +00:00
template <> struct ConstructDecInt<32> { using Type = Int256; };
template <typename T, typename U>
struct DecCompareInt
{
2021-09-10 11:49:22 +00:00
using Type = typename ConstructDecInt<(!is_decimal<U> || sizeof(T) > sizeof(U)) ? sizeof(T) : sizeof(U)>::Type;
using TypeA = Type;
using TypeB = Type;
};
///
template <typename A, typename B, template <typename, typename> typename Operation, bool _check_overflow = true,
2021-09-10 11:49:22 +00:00
bool _actual = is_decimal<A> || is_decimal<B>>
class DecimalComparison
{
public:
using CompareInt = typename DecCompareInt<A, B>::Type;
using Op = Operation<CompareInt, CompareInt>;
2021-09-10 11:49:22 +00:00
using ColVecA = ColumnVectorOrDecimal<A>;
using ColVecB = ColumnVectorOrDecimal<B>;
using ArrayA = typename ColVecA::Container;
using ArrayB = typename ColVecB::Container;
2020-10-17 14:23:37 +00:00
static ColumnPtr apply(const ColumnWithTypeAndName & col_left, const ColumnWithTypeAndName & col_right)
{
if constexpr (_actual)
{
ColumnPtr c_res;
Shift shift = getScales<A, B>(col_left.type, col_right.type);
2020-10-17 14:23:37 +00:00
return applyWithScale(col_left.column, col_right.column, shift);
}
2020-10-17 14:23:37 +00:00
else
return nullptr;
}
static bool compare(A a, B b, UInt32 scale_a, UInt32 scale_b)
{
2021-02-20 18:13:36 +00:00
static const UInt32 max_scale = DecimalUtils::max_precision<Decimal256>;
if (scale_a > max_scale || scale_b > max_scale)
throw Exception("Bad scale of decimal field", ErrorCodes::DECIMAL_OVERFLOW);
Shift shift;
if (scale_a < scale_b)
shift.a = static_cast<CompareInt>(DecimalUtils::scaleMultiplier<B>(scale_b - scale_a));
if (scale_a > scale_b)
shift.b = static_cast<CompareInt>(DecimalUtils::scaleMultiplier<A>(scale_a - scale_b));
return applyWithScale(a, b, shift);
}
private:
struct Shift
{
CompareInt a = 1;
CompareInt b = 1;
bool none() const { return a == 1 && b == 1; }
bool left() const { return a != 1; }
bool right() const { return b != 1; }
};
template <typename T, typename U>
static auto applyWithScale(T a, U b, const Shift & shift)
{
if (shift.left())
return apply<true, false>(a, b, shift.a);
else if (shift.right())
return apply<false, true>(a, b, shift.b);
return apply<false, false>(a, b, 1);
}
template <typename T, typename U>
2021-09-10 11:49:22 +00:00
static std::enable_if_t<is_decimal<T> && is_decimal<U>, Shift>
getScales(const DataTypePtr & left_type, const DataTypePtr & right_type)
{
const DataTypeDecimalBase<T> * decimal0 = checkDecimalBase<T>(*left_type);
const DataTypeDecimalBase<U> * decimal1 = checkDecimalBase<U>(*right_type);
Shift shift;
if (decimal0 && decimal1)
{
auto result_type = DecimalUtils::binaryOpResult<false, false>(*decimal0, *decimal1);
shift.a = static_cast<CompareInt>(result_type.scaleFactorFor(decimal0->getTrait(), false).value);
shift.b = static_cast<CompareInt>(result_type.scaleFactorFor(decimal1->getTrait(), false).value);
}
else if (decimal0)
shift.b = static_cast<CompareInt>(decimal0->getScaleMultiplier().value);
else if (decimal1)
shift.a = static_cast<CompareInt>(decimal1->getScaleMultiplier().value);
return shift;
}
template <typename T, typename U>
2021-09-10 11:49:22 +00:00
static std::enable_if_t<is_decimal<T> && !is_decimal<U>, Shift>
getScales(const DataTypePtr & left_type, const DataTypePtr &)
{
Shift shift;
const DataTypeDecimalBase<T> * decimal0 = checkDecimalBase<T>(*left_type);
if (decimal0)
shift.b = static_cast<CompareInt>(decimal0->getScaleMultiplier().value);
return shift;
}
template <typename T, typename U>
2021-09-10 11:49:22 +00:00
static std::enable_if_t<!is_decimal<T> && is_decimal<U>, Shift>
getScales(const DataTypePtr &, const DataTypePtr & right_type)
{
Shift shift;
const DataTypeDecimalBase<U> * decimal1 = checkDecimalBase<U>(*right_type);
if (decimal1)
shift.a = static_cast<CompareInt>(decimal1->getScaleMultiplier().value);
return shift;
}
template <bool scale_left, bool scale_right>
static ColumnPtr apply(const ColumnPtr & c0, const ColumnPtr & c1, CompareInt scale)
{
auto c_res = ColumnUInt8::create();
if constexpr (_actual)
{
bool c0_is_const = isColumnConst(*c0);
bool c1_is_const = isColumnConst(*c1);
if (c0_is_const && c1_is_const)
{
const ColumnConst * c0_const = checkAndGetColumnConst<ColVecA>(c0.get());
const ColumnConst * c1_const = checkAndGetColumnConst<ColVecB>(c1.get());
A a = c0_const->template getValue<A>();
B b = c1_const->template getValue<B>();
UInt8 res = apply<scale_left, scale_right>(a, b, scale);
return DataTypeUInt8().createColumnConst(c0->size(), toField(res));
}
ColumnUInt8::Container & vec_res = c_res->getData();
vec_res.resize(c0->size());
if (c0_is_const)
{
const ColumnConst * c0_const = checkAndGetColumnConst<ColVecA>(c0.get());
A a = c0_const->template getValue<A>();
if (const ColVecB * c1_vec = checkAndGetColumn<ColVecB>(c1.get()))
constantVector<scale_left, scale_right>(a, c1_vec->getData(), vec_res, scale);
else
throw Exception("Wrong column in Decimal comparison", ErrorCodes::LOGICAL_ERROR);
}
else if (c1_is_const)
{
const ColumnConst * c1_const = checkAndGetColumnConst<ColVecB>(c1.get());
B b = c1_const->template getValue<B>();
if (const ColVecA * c0_vec = checkAndGetColumn<ColVecA>(c0.get()))
vectorConstant<scale_left, scale_right>(c0_vec->getData(), b, vec_res, scale);
else
throw Exception("Wrong column in Decimal comparison", ErrorCodes::LOGICAL_ERROR);
}
else
{
if (const ColVecA * c0_vec = checkAndGetColumn<ColVecA>(c0.get()))
{
if (const ColVecB * c1_vec = checkAndGetColumn<ColVecB>(c1.get()))
vectorVector<scale_left, scale_right>(c0_vec->getData(), c1_vec->getData(), vec_res, scale);
else
throw Exception("Wrong column in Decimal comparison", ErrorCodes::LOGICAL_ERROR);
}
else
throw Exception("Wrong column in Decimal comparison", ErrorCodes::LOGICAL_ERROR);
}
}
return c_res;
}
template <bool scale_left, bool scale_right>
static NO_INLINE UInt8 apply(A a, B b, CompareInt scale [[maybe_unused]])
{
CompareInt x;
2021-09-10 11:49:22 +00:00
if constexpr (is_decimal<A>)
x = a.value;
else
x = a;
CompareInt y;
2021-09-10 11:49:22 +00:00
if constexpr (is_decimal<B>)
y = b.value;
else
y = b;
if constexpr (_check_overflow)
{
bool overflow = false;
if constexpr (sizeof(A) > sizeof(CompareInt))
2021-01-26 19:04:03 +00:00
overflow |= (static_cast<A>(x) != a);
if constexpr (sizeof(B) > sizeof(CompareInt))
2021-01-26 19:04:03 +00:00
overflow |= (static_cast<B>(y) != b);
2019-11-02 05:55:06 +00:00
if constexpr (is_unsigned_v<A>)
overflow |= (x < 0);
2019-11-02 05:55:06 +00:00
if constexpr (is_unsigned_v<B>)
overflow |= (y < 0);
if constexpr (scale_left)
overflow |= common::mulOverflow(x, scale, x);
if constexpr (scale_right)
overflow |= common::mulOverflow(y, scale, y);
if (overflow)
2021-05-07 23:12:48 +00:00
throw Exception("Can't compare decimal number due to overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
else
{
if constexpr (scale_left)
x = common::mulIgnoreOverflow(x, scale);
if constexpr (scale_right)
y = common::mulIgnoreOverflow(y, scale);
}
return Op::apply(x, y);
}
template <bool scale_left, bool scale_right>
static void NO_INLINE vectorVector(const ArrayA & a, const ArrayB & b, PaddedPODArray<UInt8> & c,
CompareInt scale)
{
size_t size = a.size();
const A * a_pos = a.data();
const B * b_pos = b.data();
UInt8 * c_pos = c.data();
const A * a_end = a_pos + size;
while (a_pos < a_end)
{
*c_pos = apply<scale_left, scale_right>(*a_pos, *b_pos, scale);
++a_pos;
++b_pos;
++c_pos;
}
}
template <bool scale_left, bool scale_right>
static void NO_INLINE vectorConstant(const ArrayA & a, B b, PaddedPODArray<UInt8> & c, CompareInt scale)
{
size_t size = a.size();
const A * a_pos = a.data();
UInt8 * c_pos = c.data();
const A * a_end = a_pos + size;
while (a_pos < a_end)
{
*c_pos = apply<scale_left, scale_right>(*a_pos, b, scale);
++a_pos;
++c_pos;
}
}
template <bool scale_left, bool scale_right>
static void NO_INLINE constantVector(A a, const ArrayB & b, PaddedPODArray<UInt8> & c, CompareInt scale)
{
size_t size = b.size();
const B * b_pos = b.data();
UInt8 * c_pos = c.data();
const B * b_end = b_pos + size;
while (b_pos < b_end)
{
*c_pos = apply<scale_left, scale_right>(a, *b_pos, scale);
++b_pos;
++c_pos;
}
}
};
}