`MgBench` — это аналитический тест производительности для данных журнала событий, сгенерированных машиной. Бенчмарк разработан [Andrew Crotty](http://cs.brown.edu/people/acrotty/).
-- Q2.1: Which requests have caused server errors within the past 2 weeks?
SELECT *
FROM logs2
WHERE status_code >= 500
AND log_time >= TIMESTAMP '2012-12-18 00:00:00'
ORDER BY log_time;
-- Q2.2: During a specific 2-week period, was the user password file leaked?
SELECT *
FROM logs2
WHERE status_code >= 200
AND status_code <300
AND request LIKE '%/etc/passwd%'
AND log_time >= TIMESTAMP '2012-05-06 00:00:00'
AND log_time <TIMESTAMP'2012-05-2000:00:00';
-- Q2.3: What was the average path depth for top-level requests in the past month?
SELECT top_level,
AVG(LENGTH(request) - LENGTH(REPLACE(request, '/', ''))) AS depth_avg
FROM (
SELECT SUBSTRING(request FROM 1 FOR len) AS top_level,
request
FROM (
SELECT POSITION(SUBSTRING(request FROM 2), '/') AS len,
request
FROM logs2
WHERE status_code >= 200
AND status_code <300
AND log_time >= TIMESTAMP '2012-12-01 00:00:00'
) AS r
WHERE len > 0
) AS s
WHERE top_level IN ('/about','/courses','/degrees','/events',
'/grad','/industry','/news','/people',
'/publications','/research','/teaching','/ugrad')
GROUP BY top_level
ORDER BY top_level;
-- Q2.4: During the last 3 months, which clients have made an excessive number of requests?
SELECT client_ip,
COUNT(*) AS num_requests
FROM logs2
WHERE log_time >= TIMESTAMP '2012-10-01 00:00:00'
GROUP BY client_ip
HAVING COUNT(*) >= 100000
ORDER BY num_requests DESC;
-- Q2.5: What are the daily unique visitors?
SELECT dt,
COUNT(DISTINCT client_ip)
FROM (
SELECT CAST(log_time AS DATE) AS dt,
client_ip
FROM logs2
) AS r
GROUP BY dt
ORDER BY dt;
-- Q2.6: What are the average and maximum data transfer rates (Gbps)?
SELECT AVG(transfer) / 125000000.0 AS transfer_avg,
MAX(transfer) / 125000000.0 AS transfer_max
FROM (
SELECT log_time,
SUM(object_size) AS transfer
FROM logs2
GROUP BY log_time
) AS r;
-- Q3.1: Did the indoor temperature reach freezing over the weekend?
SELECT *
FROM logs3
WHERE event_type = 'temperature'
AND event_value <= 32.0
AND log_time >= '2019-11-29 17:00:00.000';
-- Q3.4: Over the past 6 months, how frequently were each door opened?
SELECT device_name,
device_floor,
COUNT(*) AS ct
FROM logs3
WHERE event_type = 'door_open'
AND log_time >= '2019-06-01 00:00:00.000'
GROUP BY device_name,
device_floor
ORDER BY ct DESC;
-- Q3.5: Where in the building do large temperature variations occur in winter and summer?
WITH temperature AS (
SELECT dt,
device_name,
device_type,
device_floor
FROM (
SELECT dt,
hr,
device_name,
device_type,
device_floor,
AVG(event_value) AS temperature_hourly_avg
FROM (
SELECT CAST(log_time AS DATE) AS dt,
EXTRACT(HOUR FROM log_time) AS hr,
device_name,
device_type,
device_floor,
event_value
FROM logs3
WHERE event_type = 'temperature'
) AS r
GROUP BY dt,
hr,
device_name,
device_type,
device_floor
) AS s
GROUP BY dt,
device_name,
device_type,
device_floor
HAVING MAX(temperature_hourly_avg) - MIN(temperature_hourly_avg) >= 25.0
)
SELECT DISTINCT device_name,
device_type,
device_floor,
'WINTER'
FROM temperature
WHERE dt >= DATE '2018-12-01'
AND dt <DATE'2019-03-01'
UNION
SELECT DISTINCT device_name,
device_type,
device_floor,
'SUMMER'
FROM temperature
WHERE dt >= DATE '2019-06-01'
AND dt <DATE'2019-09-01';
-- Q3.6: For each device category, what are the monthly power consumption metrics?
SELECT yr,
mo,
SUM(coffee_hourly_avg) AS coffee_monthly_sum,
AVG(coffee_hourly_avg) AS coffee_monthly_avg,
SUM(printer_hourly_avg) AS printer_monthly_sum,
AVG(printer_hourly_avg) AS printer_monthly_avg,
SUM(projector_hourly_avg) AS projector_monthly_sum,
AVG(projector_hourly_avg) AS projector_monthly_avg,
SUM(vending_hourly_avg) AS vending_monthly_sum,
AVG(vending_hourly_avg) AS vending_monthly_avg
FROM (
SELECT dt,
yr,
mo,
hr,
AVG(coffee) AS coffee_hourly_avg,
AVG(printer) AS printer_hourly_avg,
AVG(projector) AS projector_hourly_avg,
AVG(vending) AS vending_hourly_avg
FROM (
SELECT CAST(log_time AS DATE) AS dt,
EXTRACT(YEAR FROM log_time) AS yr,
EXTRACT(MONTH FROM log_time) AS mo,
EXTRACT(HOUR FROM log_time) AS hr,
CASE WHEN device_name LIKE 'coffee%' THEN event_value END AS coffee,
CASE WHEN device_name LIKE 'printer%' THEN event_value END AS printer,
CASE WHEN device_name LIKE 'projector%' THEN event_value END AS projector,
CASE WHEN device_name LIKE 'vending%' THEN event_value END AS vending
FROM logs3
WHERE device_type = 'meter'
) AS r
GROUP BY dt,
yr,
mo,
hr
) AS s
GROUP BY yr,
mo
ORDER BY yr,
mo;
```
Данные также доступны для работы с интерактивными запросами через [Playground](https://gh-api.clickhouse.tech/play?user=play), [пример](https://gh-api.clickhouse.tech/play?user=play#U0VMRUNUIG1hY2hpbmVfbmFtZSwKICAgICAgIE1JTihjcHUpIEFTIGNwdV9taW4sCiAgICAgICBNQVgoY3B1KSBBUyBjcHVfbWF4LAogICAgICAgQVZHKGNwdSkgQVMgY3B1X2F2ZywKICAgICAgIE1JTihuZXRfaW4pIEFTIG5ldF9pbl9taW4sCiAgICAgICBNQVgobmV0X2luKSBBUyBuZXRfaW5fbWF4LAogICAgICAgQVZHKG5ldF9pbikgQVMgbmV0X2luX2F2ZywKICAgICAgIE1JTihuZXRfb3V0KSBBUyBuZXRfb3V0X21pbiwKICAgICAgIE1BWChuZXRfb3V0KSBBUyBuZXRfb3V0X21heCwKICAgICAgIEFWRyhuZXRfb3V0KSBBUyBuZXRfb3V0X2F2ZwpGUk9NICgKICBTRUxFQ1QgbWFjaGluZV9uYW1lLAogICAgICAgICBDT0FMRVNDRShjcHVfdXNlciwgMC4wKSBBUyBjcHUsCiAgICAgICAgIENPQUxFU0NFKGJ5dGVzX2luLCAwLjApIEFTIG5ldF9pbiwKICAgICAgICAgQ09BTEVTQ0UoYnl0ZXNfb3V0LCAwLjApIEFTIG5ldF9vdXQKICBGUk9NIG1nYmVuY2gubG9nczEKICBXSEVSRSBtYWNoaW5lX25hbWUgSU4gKCdhbmFuc2knLCdhcmFnb2cnLCd1cmQnKQogICAgQU5EIGxvZ190aW1lID49IFRJTUVTVEFNUCAnMjAxNy0wMS0xMSAwMDowMDowMCcKKSBBUyByCkdST1VQIEJZIG1hY2hpbmVfbmFtZQ==).