ClickHouse/base/consistent-hashing/consistent_hashing.cpp

126 lines
4.0 KiB
C++
Raw Normal View History

#include "consistent_hashing.h"
#include "bitops.h"
#include "popcount.h"
#include <stdexcept>
/*
* (all numbers are written in big-endian manner: the least significant digit on the right)
* (only bit representations are used - no hex or octal, leading zeroes are ommited)
*
* Consistent hashing scheme:
*
* (sizeof(TValue) * 8, y] (y, 0]
* a = * ablock
* b = * cblock
*
* (sizeof(TValue) * 8, k] (k, 0]
* c = * cblock
*
* d = *
*
* k - is determined by 2^(k-1) < n <= 2^k inequality
* z - is number of ones in cblock
* y - number of digits after first one in cblock
*
* The cblock determines logic of using a- and b- blocks:
*
* bits of cblock | result of a function
* 0 : 0
* 1 : 1 (optimization, the next case includes this one)
* 1?..? : 1ablock (z is even) or 1bblock (z is odd) if possible (<n)
*
* If last case is not possible (>=n), than smooth moving from n=2^(k-1) to n=2^k is applied.
* Using "*" bits of a-,b-,c-,d- blocks uint64_t value is combined, modulo of which determines
* if the value should be greather than 2^(k-1) or ConsistentHashing(x, 2^(k-1)) should be used.
* The last case is optimized according to previous checks.
*/
namespace {
template<class TValue>
TValue PowerOf2(size_t k) {
return (TValue)0x1 << k;
}
template<class TValue>
TValue SelectAOrBBlock(TValue a, TValue b, TValue cBlock) {
size_t z = PopCount<uint64_t>(cBlock);
bool useABlock = z % 2 == 0;
return useABlock ? a : b;
}
// Gets the exact result for n = k2 = 2 ^ k
template<class TValue>
size_t ConsistentHashingForPowersOf2(TValue a, TValue b, TValue c, TValue k2) {
TValue cBlock = c & (k2 - 1); // (k, 0] bits of c
// Zero and one cases
if (cBlock < 2) {
// First two cases of result function table: 0 if cblock is 0, 1 if cblock is 1.
return cBlock;
}
size_t y = GetValueBitCount<uint64_t>(cBlock) - 1; // cblock = 0..01?..? (y = number of digits after 1), y > 0
TValue y2 = PowerOf2<TValue>(y); // y2 = 2^y
TValue abBlock = SelectAOrBBlock(a, b, cBlock) & (y2 - 1);
return y2 + abBlock;
}
template<class TValue>
uint64_t GetAsteriskBits(TValue a, TValue b, TValue c, TValue d, size_t k) {
size_t shift = sizeof(TValue) * 8 - k;
uint64_t res = (d << shift) | (c >> k);
++shift;
res <<= shift;
res |= b >> (k - 1);
res <<= shift;
res |= a >> (k - 1);
return res;
}
template<class TValue>
size_t ConsistentHashingImpl(TValue a, TValue b, TValue c, TValue d, size_t n) {
if (n <= 0)
throw std::runtime_error("Can't map consistently to a zero values.");
// Uninteresting case
if (n == 1) {
return 0;
}
size_t k = GetValueBitCount(n - 1); // 2^(k-1) < n <= 2^k, k >= 1
TValue k2 = PowerOf2<TValue>(k); // k2 = 2^k
size_t largeValue;
{
// Bit determined variant. Large scheme.
largeValue = ConsistentHashingForPowersOf2(a, b, c, k2);
if (largeValue < n) {
return largeValue;
}
}
// Since largeValue is not assigned yet
// Smooth moving from one bit scheme to another
TValue k21 = PowerOf2<TValue>(k - 1);
{
size_t s = GetAsteriskBits(a, b, c, d, k) % (largeValue * (largeValue + 1));
size_t largeValue2 = s / k2 + k21;
if (largeValue2 < n) {
return largeValue2;
}
}
// Bit determined variant. Short scheme.
return ConsistentHashingForPowersOf2(a, b, c, k21); // Do not apply checks. It is always less than k21 = 2^(k-1)
}
} // namespace // anonymous
std::size_t ConsistentHashing(std::uint64_t x, std::size_t n) {
uint32_t lo = LO_32(x);
uint32_t hi = HI_32(x);
return ConsistentHashingImpl<uint16_t>(LO_16(lo), HI_16(lo), LO_16(hi), HI_16(hi), n);
}
std::size_t ConsistentHashing(std::uint64_t lo, std::uint64_t hi, std::size_t n) {
return ConsistentHashingImpl<uint32_t>(LO_32(lo), HI_32(lo), LO_32(hi), HI_32(hi), n);
}