ClickHouse/src/Functions/minSampleSize.cpp

229 lines
9.1 KiB
C++
Raw Normal View History

#include <Columns/ColumnTuple.h>
#include <Columns/ColumnsNumber.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeTuple.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionHelpers.h>
#include <boost/math/distributions/normal.hpp>
#include <cmath>
#include <cfloat>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
template <typename Impl>
class FunctionMinSampleSize : public IFunction
{
public:
static constexpr auto name = Impl::name;
static FunctionPtr create(ContextPtr)
{
return std::make_shared<FunctionMinSampleSize<Impl>>();
}
String getName() const override
{
return name;
}
size_t getNumberOfArguments() const override { return Impl::num_args; }
bool useDefaultImplementationForNulls() const override { return false; }
bool useDefaultImplementationForConstants() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
static DataTypePtr getReturnType()
{
DataTypes types
{
std::make_shared<DataTypeNumber<Float64>>(),
std::make_shared<DataTypeNumber<Float64>>(),
std::make_shared<DataTypeNumber<Float64>>(),
};
Strings names
{
"minimum_sample_size",
"detect_range_lower",
"detect_range_upper",
};
return std::make_shared<DataTypeTuple>(
std::move(types),
std::move(names)
);
}
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
for (const auto & arg : arguments)
{
if (!isFloat(arg))
{
throw Exception("Arguments of function " + getName() + " must be floats", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
}
return getReturnType();
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
{
return Impl::execute(arguments, input_rows_count);
}
};
static bool isBetweenZeroAndOne(Float64 v)
{
return v >= 0.0 && v <= 1.0 && fabs(v - 0.0) >= DBL_EPSILON && fabs(v - 1.0) >= DBL_EPSILON;
}
struct ContinousImpl
{
static constexpr auto name = "minSampleSizeContinous";
static constexpr size_t num_args = 5;
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, size_t input_rows_count)
{
const auto converted_type = std::make_shared<DataTypeFloat64>();
const ColumnFloat64 * col_baseline = typeid_cast<const ColumnFloat64 *>(arguments[0].column.get());
const ColumnFloat64 * col_sigma = typeid_cast<const ColumnFloat64 *>(arguments[1].column.get());
const ColumnFloat64 * col_mde = typeid_cast<const ColumnFloat64 *>(arguments[2].column.get());
const ColumnFloat64 * col_power = typeid_cast<const ColumnFloat64 *>(arguments[3].column.get());
const ColumnFloat64 * col_alpha = typeid_cast<const ColumnFloat64 *>(arguments[4].column.get());
auto res_min_sample_size = ColumnFloat64::create();
auto & data_min_sample_size = res_min_sample_size->getData();
data_min_sample_size.reserve(input_rows_count);
auto res_detect_lower = ColumnFloat64::create();
auto & data_detect_lower = res_detect_lower->getData();
data_detect_lower.reserve(input_rows_count);
auto res_detect_upper = ColumnFloat64::create();
auto & data_detect_upper = res_detect_upper->getData();
data_detect_upper.reserve(input_rows_count);
for (size_t row_num = 0; row_num < input_rows_count; ++row_num)
{
/// Mean of control-metric
Float64 baseline = col_baseline->getFloat64(row_num);
/// Standard deviation of conrol-metric
Float64 sigma = col_sigma->getFloat64(row_num);
/// Minimal Detectable Effect
Float64 mde = col_mde->getFloat64(row_num);
/// Sufficient statistical power to detect a treatment effect
Float64 power = col_power->getFloat64(row_num);
/// Significance level
Float64 alpha = col_alpha->getFloat64(row_num);
if (!std::isfinite(baseline) || !std::isfinite(sigma) || !isBetweenZeroAndOne(mde) || !isBetweenZeroAndOne(power) || !isBetweenZeroAndOne(alpha))
{
data_min_sample_size.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
data_detect_lower.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
data_detect_upper.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
continue;
}
Float64 delta = baseline * mde;
using namespace boost::math;
normal_distribution<> nd(0.0, 1.0);
Float64 min_sample_size = 2 * (std::pow(sigma, 2)) * std::pow(quantile(nd, 1.0 - alpha / 2) + quantile(nd, power), 2) / std::pow(delta, 2);
data_min_sample_size.emplace_back(min_sample_size);
data_detect_lower.emplace_back(baseline - delta);
data_detect_upper.emplace_back(baseline + delta);
}
return ColumnTuple::create(Columns{std::move(res_min_sample_size), std::move(res_detect_lower), std::move(res_detect_upper)});
}
};
struct ConversionImpl
{
static constexpr auto name = "minSampleSizeConversion";
static constexpr size_t num_args = 4;
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, size_t input_rows_count)
{
const ColumnFloat64 * col_p1 = typeid_cast<const ColumnFloat64 *>(arguments[0].column.get());
const ColumnFloat64 * col_mde = typeid_cast<const ColumnFloat64 *>(arguments[1].column.get());
const ColumnFloat64 * col_power = typeid_cast<const ColumnFloat64 *>(arguments[2].column.get());
const ColumnFloat64 * col_alpha = typeid_cast<const ColumnFloat64 *>(arguments[3].column.get());
auto res_min_sample_size = ColumnFloat64::create();
auto & data_min_sample_size = res_min_sample_size->getData();
data_min_sample_size.reserve(input_rows_count);
auto res_detect_lower = ColumnFloat64::create();
auto & data_detect_lower = res_detect_lower->getData();
data_detect_lower.reserve(input_rows_count);
auto res_detect_upper = ColumnFloat64::create();
auto & data_detect_upper = res_detect_upper->getData();
data_detect_upper.reserve(input_rows_count);
for (size_t row_num = 0; row_num < input_rows_count; ++row_num)
{
/// Mean of control-metric
Float64 p1 = col_p1->getFloat64(row_num);
/// Minimal Detectable Effect
Float64 mde = col_mde->getFloat64(row_num);
/// Sufficient statistical power to detect a treatment effect
Float64 power = col_power->getFloat64(row_num);
/// Significance level
Float64 alpha = col_alpha->getFloat64(row_num);
if (!std::isfinite(p1) || !isBetweenZeroAndOne(mde) || !isBetweenZeroAndOne(power) || !isBetweenZeroAndOne(alpha))
{
data_min_sample_size.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
data_detect_lower.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
data_detect_upper.emplace_back(std::numeric_limits<Float64>::quiet_NaN());
continue;
}
Float64 q1 = 1.0 - p1;
Float64 p2 = p1 + mde;
Float64 q2 = 1.0 - p2;
Float64 p_bar = (p1 + p2) / 2.0;
using namespace boost::math;
normal_distribution<> nd(0.0, 1.0);
Float64 min_sample_size = std::pow(
quantile(nd, 1.0 - alpha / 2.0) * std::sqrt(2.0 * p_bar * (1 - p_bar))
+ quantile(nd, power) * std::sqrt(p1 * q1 + p2 * q2), 2
) / std::pow(mde, 2);
data_min_sample_size.emplace_back(min_sample_size);
data_detect_lower.emplace_back(p1 - mde);
data_detect_upper.emplace_back(p1 + mde);
}
return ColumnTuple::create(Columns{std::move(res_min_sample_size), std::move(res_detect_lower), std::move(res_detect_upper)});
}
};
void registerFunctionMinSampleSize(FunctionFactory & factory)
{
factory.registerFunction<FunctionMinSampleSize<ContinousImpl>>();
factory.registerFunction<FunctionMinSampleSize<ConversionImpl>>();
}
}