ClickHouse/dbms/src/AggregateFunctions/QuantileExact.h

242 lines
7.7 KiB
C++
Raw Normal View History

#pragma once
2017-12-26 19:00:20 +00:00
#include <Common/PODArray.h>
#include <Common/NaNUtils.h>
2019-02-10 17:40:52 +00:00
#include <Core/Types.h>
2017-12-26 19:00:20 +00:00
#include <IO/WriteBuffer.h>
#include <IO/ReadBuffer.h>
#include <IO/VarInt.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int BAD_ARGUMENTS;
}
/** Calculates quantile by collecting all values into array
* and applying n-th element (introselect) algorithm for the resulting array.
*
2019-02-02 14:27:43 +00:00
* It uses O(N) memory and it is very inefficient in case of high amount of identical values.
* But it is very CPU efficient for not large datasets.
*/
template <typename Value>
struct QuantileExact
{
/// The memory will be allocated to several elements at once, so that the state occupies 64 bytes.
static constexpr size_t bytes_in_arena = 64 - sizeof(PODArray<Value>);
using Array = PODArrayWithStackMemory<Value, bytes_in_arena>;
Array array;
void add(const Value & x)
{
/// We must skip NaNs as they are not compatible with comparison sorting.
if (!isNaN(x))
array.push_back(x);
}
template <typename Weight>
void add(const Value &, const Weight &)
{
throw Exception("Method add with weight is not implemented for QuantileExact", ErrorCodes::NOT_IMPLEMENTED);
}
void merge(const QuantileExact & rhs)
{
array.insert(rhs.array.begin(), rhs.array.end());
}
void serialize(WriteBuffer & buf) const
{
size_t size = array.size();
writeVarUInt(size, buf);
buf.write(reinterpret_cast<const char *>(array.data()), size * sizeof(array[0]));
}
void deserialize(ReadBuffer & buf)
{
size_t size = 0;
readVarUInt(size, buf);
array.resize(size);
buf.read(reinterpret_cast<char *>(array.data()), size * sizeof(array[0]));
}
/// Get the value of the `level` quantile. The level must be between 0 and 1.
Value get(Float64 level)
{
if (!array.empty())
{
size_t n = level < 1
? level * array.size()
: (array.size() - 1);
std::nth_element(array.begin(), array.begin() + n, array.end()); /// NOTE You can think of the radix-select algorithm.
return array[n];
}
return std::numeric_limits<Value>::quiet_NaN();
}
/// Get the `size` values of `levels` quantiles. Write `size` results starting with `result` address.
/// indices - an array of index levels such that the corresponding elements will go in ascending order.
void getMany(const Float64 * levels, const size_t * indices, size_t size, Value * result)
{
if (!array.empty())
{
size_t prev_n = 0;
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
size_t n = level < 1
? level * array.size()
: (array.size() - 1);
std::nth_element(array.begin() + prev_n, array.begin() + n, array.end());
result[indices[i]] = array[n];
prev_n = n;
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = Value();
}
}
2019-08-13 19:12:31 +00:00
};
2019-08-14 11:18:46 +00:00
/// QuantileExactExclusive is equivalent to Excel PERCENTILE.EXC, R-6, SAS-4, SciPy-(0,0)
2019-08-13 19:12:31 +00:00
template <typename Value>
struct QuantileExactExclusive : public QuantileExact<Value>
{
using QuantileExact<Value>::array;
/// Get the value of the `level` quantile. The level must be between 0 and 1 excluding bounds.
2019-08-19 16:03:25 +00:00
Float64 getFloat(Float64 level)
2019-08-13 19:12:31 +00:00
{
if (!array.empty())
{
2019-08-14 11:18:46 +00:00
if (level == 0. || level == 1.)
throw Exception("QuantileExactExclusive cannot interpolate for the percentiles 1 and 0", ErrorCodes::BAD_ARGUMENTS);
2019-08-13 19:12:31 +00:00
Float64 h = level * (array.size() + 1);
auto n = static_cast<size_t>(h);
if (n >= array.size())
return array[array.size() - 1];
else if (n < 1)
return array[0];
std::nth_element(array.begin(), array.begin() + n - 1, array.end());
auto nth_element = std::min_element(array.begin() + n, array.end());
2019-08-13 19:12:31 +00:00
return array[n - 1] + (h - n) * (*nth_element - array[n - 1]);
2019-08-13 19:12:31 +00:00
}
return std::numeric_limits<Float64>::quiet_NaN();
}
2019-08-19 16:03:25 +00:00
void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result)
2019-08-13 19:12:31 +00:00
{
if (!array.empty())
{
size_t prev_n = 0;
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
if (level == 0. || level == 1.)
throw Exception("QuantileExactExclusive cannot interpolate for the percentiles 1 and 0", ErrorCodes::BAD_ARGUMENTS);
2019-08-13 19:12:31 +00:00
Float64 h = level * (array.size() + 1);
auto n = static_cast<size_t>(h);
if (n >= array.size())
result[indices[i]] = array[array.size() - 1];
else if (n < 1)
result[indices[i]] = array[0];
else
{
std::nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end());
auto nth_element = std::min_element(array.begin() + n, array.end());
result[indices[i]] = array[n - 1] + (h - n) * (*nth_element - array[n - 1]);
prev_n = n - 1;
}
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<Float64>::quiet_NaN();
}
}
};
2019-08-23 18:30:04 +00:00
/// QuantileExactInclusive is equivalent to Excel PERCENTILE and PERCENTILE.INC, R-7, SciPy-(1,1)
template <typename Value>
struct QuantileExactInclusive : public QuantileExact<Value>
{
using QuantileExact<Value>::array;
/// Get the value of the `level` quantile. The level must be between 0 and 1 including bounds.
2019-08-19 16:03:25 +00:00
Float64 getFloat(Float64 level)
{
if (!array.empty())
{
Float64 h = level * (array.size() - 1) + 1;
auto n = static_cast<size_t>(h);
if (n >= array.size())
return array[array.size() - 1];
else if (n < 1)
return array[0];
std::nth_element(array.begin(), array.begin() + n - 1, array.end());
auto nth_element = std::min_element(array.begin() + n, array.end());
return array[n - 1] + (h - n) * (*nth_element - array[n - 1]);
}
return std::numeric_limits<Float64>::quiet_NaN();
}
2019-08-19 16:03:25 +00:00
void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result)
{
if (!array.empty())
{
size_t prev_n = 0;
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
Float64 h = level * (array.size() - 1) + 1;
auto n = static_cast<size_t>(h);
if (n >= array.size())
result[indices[i]] = array[array.size() - 1];
else if (n < 1)
result[indices[i]] = array[0];
else
{
std::nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end());
auto nth_element = std::min_element(array.begin() + n, array.end());
2019-08-13 19:12:31 +00:00
result[indices[i]] = array[n - 1] + (h - n) * (*nth_element - array[n - 1]);
prev_n = n - 1;
2019-08-13 19:12:31 +00:00
}
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<Float64>::quiet_NaN();
}
}
};
}