ClickHouse/dbms/include/DB/Dictionaries/FlatDictionary.h

513 lines
18 KiB
C
Raw Normal View History

#pragma once
#include <DB/Dictionaries/IDictionary.h>
#include <DB/Dictionaries/IDictionarySource.h>
#include <DB/Dictionaries/DictionaryStructure.h>
#include <DB/Columns/ColumnString.h>
2015-04-16 06:12:35 +00:00
#include <DB/Common/Arena.h>
2015-10-05 00:33:43 +00:00
#include <ext/range.hpp>
#include <ext/size.hpp>
#include <atomic>
#include <vector>
#include <tuple>
namespace DB
{
2016-01-12 02:21:15 +00:00
namespace ErrorCodes
{
extern const int TYPE_MISMATCH;
extern const int ARGUMENT_OUT_OF_BOUND;
extern const int BAD_ARGUMENTS;
extern const int DICTIONARY_IS_EMPTY;
}
const auto initial_array_size = 1024;
const auto max_array_size = 500000;
class FlatDictionary final : public IDictionary
{
public:
FlatDictionary(const std::string & name, const DictionaryStructure & dict_struct,
DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime, bool require_nonempty)
: name{name}, dict_struct(dict_struct),
source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime),
require_nonempty(require_nonempty)
{
createAttributes();
try
{
loadData();
calculateBytesAllocated();
}
catch (...)
{
creation_exception = std::current_exception();
}
creation_time = std::chrono::system_clock::now();
}
FlatDictionary(const FlatDictionary & other)
: FlatDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.require_nonempty}
{}
std::exception_ptr getCreationException() const override { return creation_exception; }
std::string getName() const override { return name; }
std::string getTypeName() const override { return "Flat"; }
2015-03-24 11:30:16 +00:00
std::size_t getBytesAllocated() const override { return bytes_allocated; }
std::size_t getQueryCount() const override { return query_count.load(std::memory_order_relaxed); }
double getHitRate() const override { return 1.0; }
std::size_t getElementCount() const override { return element_count; }
double getLoadFactor() const override { return static_cast<double>(element_count) / bucket_count; }
bool isCached() const override { return false; }
2015-02-10 21:10:58 +00:00
DictionaryPtr clone() const override { return std::make_unique<FlatDictionary>(*this); }
const IDictionarySource * getSource() const override { return source_ptr.get(); }
const DictionaryLifetime & getLifetime() const override { return dict_lifetime; }
const DictionaryStructure & getStructure() const override { return dict_struct; }
std::chrono::time_point<std::chrono::system_clock> getCreationTime() const override
{
return creation_time;
}
bool isInjective(const std::string & attribute_name) const override
{
return dict_struct.attributes[&getAttribute(attribute_name) - attributes.data()].injective;
}
bool hasHierarchy() const override { return hierarchical_attribute; }
void toParent(const PODArray<id_t> & ids, PODArray<id_t> & out) const override
{
const auto null_value = std::get<UInt64>(hierarchical_attribute->null_values);
getItems<UInt64>(*hierarchical_attribute, ids,
[&] (const std::size_t row, const UInt64 value) { out[row] = value; },
[&] (const std::size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void get##TYPE(const std::string & attribute_name, const PODArray<id_t> & ids, PODArray<TYPE> & out) const\
{\
const auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
const auto null_value = std::get<TYPE>(attribute.null_values);\
\
getItems<TYPE>(attribute, ids,\
[&] (const std::size_t row, const auto value) { out[row] = value; },\
[&] (const std::size_t) { return null_value; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(const std::string & attribute_name, const PODArray<id_t> & ids, ColumnString * out) const
{
const auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
const auto & null_value = StringRef{std::get<String>(attribute.null_values)};
getItems<StringRef>(attribute, ids,
[&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const std::size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const PODArray<id_t> & ids, const PODArray<TYPE> & def,\
PODArray<TYPE> & out) const\
{\
const auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
getItems<TYPE>(attribute, ids,\
[&] (const std::size_t row, const auto value) { out[row] = value; },\
[&] (const std::size_t row) { return def[row]; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const PODArray<id_t> & ids, const ColumnString * const def,
ColumnString * const out) const
{
const auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
getItems<StringRef>(attribute, ids,
[&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const std::size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const PODArray<id_t> & ids, const TYPE def,\
PODArray<TYPE> & out) const\
{\
const auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
getItems<TYPE>(attribute, ids,\
[&] (const std::size_t row, const auto value) { out[row] = value; },\
[&] (const std::size_t) { return def; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const PODArray<id_t> & ids, const String & def,
ColumnString * const out) const
{
const auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
getItems<StringRef>(attribute, ids,
[&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const std::size_t) { return StringRef{def}; });
}
void has(const PODArray<id_t> & ids, PODArray<UInt8> & out) const override
{
const auto & attribute = attributes.front();
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: has<UInt8>(attribute, ids, out); break;
case AttributeUnderlyingType::UInt16: has<UInt16>(attribute, ids, out); break;
case AttributeUnderlyingType::UInt32: has<UInt32>(attribute, ids, out); break;
case AttributeUnderlyingType::UInt64: has<UInt64>(attribute, ids, out); break;
case AttributeUnderlyingType::Int8: has<Int8>(attribute, ids, out); break;
case AttributeUnderlyingType::Int16: has<Int16>(attribute, ids, out); break;
case AttributeUnderlyingType::Int32: has<Int32>(attribute, ids, out); break;
case AttributeUnderlyingType::Int64: has<Int64>(attribute, ids, out); break;
case AttributeUnderlyingType::Float32: has<Float32>(attribute, ids, out); break;
case AttributeUnderlyingType::Float64: has<Float64>(attribute, ids, out); break;
case AttributeUnderlyingType::String: has<String>(attribute, ids, out); break;
}
}
private:
template <typename Value> using ContainerType = PODArray<Value>;
template <typename Value> using ContainerPtrType = std::unique_ptr<ContainerType<Value>>;
struct attribute_t final
{
AttributeUnderlyingType type;
std::tuple<
UInt8, UInt16, UInt32, UInt64,
Int8, Int16, Int32, Int64,
Float32, Float64,
String> null_values;
std::tuple<
ContainerPtrType<UInt8>, ContainerPtrType<UInt16>, ContainerPtrType<UInt32>, ContainerPtrType<UInt64>,
ContainerPtrType<Int8>, ContainerPtrType<Int16>, ContainerPtrType<Int32>, ContainerPtrType<Int64>,
ContainerPtrType<Float32>, ContainerPtrType<Float64>,
ContainerPtrType<StringRef>> arrays;
std::unique_ptr<Arena> string_arena;
};
void createAttributes()
{
const auto size = dict_struct.attributes.size();
attributes.reserve(size);
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
{
hierarchical_attribute = &attributes.back();
if (hierarchical_attribute->type != AttributeUnderlyingType::UInt64)
throw Exception{
name + ": hierarchical attribute must be UInt64.",
ErrorCodes::TYPE_MISMATCH
};
}
}
}
void loadData()
{
auto stream = source_ptr->loadAll();
stream->readPrefix();
while (const auto block = stream->read())
{
const auto & id_column = *block.getByPosition(0).column;
element_count += id_column.size();
for (const auto attribute_idx : ext::range(0, attributes.size()))
{
const auto & attribute_column = *block.getByPosition(attribute_idx + 1).column;
auto & attribute = attributes[attribute_idx];
for (const auto row_idx : ext::range(0, id_column.size()))
setAttributeValue(attribute, id_column[row_idx].get<UInt64>(), attribute_column[row_idx]);
}
}
stream->readSuffix();
if (require_nonempty && 0 == element_count)
throw Exception{
name + ": dictionary source is empty and 'require_nonempty' property is set.",
ErrorCodes::DICTIONARY_IS_EMPTY
};
}
2015-03-24 11:30:16 +00:00
template <typename T>
void addAttributeSize(const attribute_t & attribute)
{
const auto & array_ref = std::get<ContainerPtrType<T>>(attribute.arrays);
2015-03-24 11:30:16 +00:00
bytes_allocated += sizeof(PODArray<T>) + array_ref->storage_size();
bucket_count = array_ref->capacity();
2015-03-24 11:30:16 +00:00
}
void calculateBytesAllocated()
{
bytes_allocated += attributes.size() * sizeof(attributes.front());
2015-03-24 11:30:16 +00:00
for (const auto & attribute : attributes)
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: addAttributeSize<UInt8>(attribute); break;
case AttributeUnderlyingType::UInt16: addAttributeSize<UInt16>(attribute); break;
case AttributeUnderlyingType::UInt32: addAttributeSize<UInt32>(attribute); break;
case AttributeUnderlyingType::UInt64: addAttributeSize<UInt64>(attribute); break;
case AttributeUnderlyingType::Int8: addAttributeSize<Int8>(attribute); break;
case AttributeUnderlyingType::Int16: addAttributeSize<Int16>(attribute); break;
case AttributeUnderlyingType::Int32: addAttributeSize<Int32>(attribute); break;
case AttributeUnderlyingType::Int64: addAttributeSize<Int64>(attribute); break;
case AttributeUnderlyingType::Float32: addAttributeSize<Float32>(attribute); break;
case AttributeUnderlyingType::Float64: addAttributeSize<Float64>(attribute); break;
case AttributeUnderlyingType::String:
{
addAttributeSize<StringRef>(attribute);
bytes_allocated += sizeof(Arena) + attribute.string_arena->size();
2015-03-24 11:30:16 +00:00
break;
}
}
}
}
template <typename T>
void createAttributeImpl(attribute_t & attribute, const Field & null_value)
{
const auto & null_value_ref = std::get<T>(attribute.null_values) =
null_value.get<typename NearestFieldType<T>::Type>();
std::get<ContainerPtrType<T>>(attribute.arrays) =
std::make_unique<ContainerType<T>>(initial_array_size, null_value_ref);
}
attribute_t createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
attribute_t attr{type};
switch (type)
{
case AttributeUnderlyingType::UInt8: createAttributeImpl<UInt8>(attr, null_value); break;
case AttributeUnderlyingType::UInt16: createAttributeImpl<UInt16>(attr, null_value); break;
case AttributeUnderlyingType::UInt32: createAttributeImpl<UInt32>(attr, null_value); break;
case AttributeUnderlyingType::UInt64: createAttributeImpl<UInt64>(attr, null_value); break;
case AttributeUnderlyingType::Int8: createAttributeImpl<Int8>(attr, null_value); break;
case AttributeUnderlyingType::Int16: createAttributeImpl<Int16>(attr, null_value); break;
case AttributeUnderlyingType::Int32: createAttributeImpl<Int32>(attr, null_value); break;
case AttributeUnderlyingType::Int64: createAttributeImpl<Int64>(attr, null_value); break;
case AttributeUnderlyingType::Float32: createAttributeImpl<Float32>(attr, null_value); break;
case AttributeUnderlyingType::Float64: createAttributeImpl<Float64>(attr, null_value); break;
case AttributeUnderlyingType::String:
{
const auto & null_value_ref = std::get<String>(attr.null_values) = null_value.get<String>();
std::get<ContainerPtrType<StringRef>>(attr.arrays) =
std::make_unique<ContainerType<StringRef>>(initial_array_size, StringRef{null_value_ref});
attr.string_arena = std::make_unique<Arena>();
break;
}
}
return attr;
}
template <typename T, typename ValueSetter, typename DefaultGetter>
void getItems(
const attribute_t & attribute, const PODArray<id_t> & ids, ValueSetter && set_value,
DefaultGetter && get_default) const
{
const auto & attr = *std::get<ContainerPtrType<T>>(attribute.arrays);
const auto rows = ext::size(ids);
using null_value_type = std::conditional_t<std::is_same<T, StringRef>::value, String, T>;
const auto null_value = std::get<null_value_type>(attribute.null_values);
for (const auto row : ext::range(0, rows))
{
const auto id = ids[row];
set_value(row, id < ext::size(attr) && attr[id] != null_value ? attr[id] : get_default(row));
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
template <typename T>
void setAttributeValueImpl(attribute_t & attribute, const id_t id, const T value)
{
auto & array = *std::get<ContainerPtrType<T>>(attribute.arrays);
if (id >= array.size())
array.resize_fill(id + 1, std::get<T>(attribute.null_values));
array[id] = value;
}
void setAttributeValue(attribute_t & attribute, const id_t id, const Field & value)
{
if (id >= max_array_size)
throw Exception{
name + ": identifier should be less than " + toString(max_array_size),
ErrorCodes::ARGUMENT_OUT_OF_BOUND
};
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: setAttributeValueImpl<UInt8>(attribute, id, value.get<UInt64>()); break;
case AttributeUnderlyingType::UInt16: setAttributeValueImpl<UInt16>(attribute, id, value.get<UInt64>()); break;
case AttributeUnderlyingType::UInt32: setAttributeValueImpl<UInt32>(attribute, id, value.get<UInt64>()); break;
case AttributeUnderlyingType::UInt64: setAttributeValueImpl<UInt64>(attribute, id, value.get<UInt64>()); break;
case AttributeUnderlyingType::Int8: setAttributeValueImpl<Int8>(attribute, id, value.get<Int64>()); break;
case AttributeUnderlyingType::Int16: setAttributeValueImpl<Int16>(attribute, id, value.get<Int64>()); break;
case AttributeUnderlyingType::Int32: setAttributeValueImpl<Int32>(attribute, id, value.get<Int64>()); break;
case AttributeUnderlyingType::Int64: setAttributeValueImpl<Int64>(attribute, id, value.get<Int64>()); break;
case AttributeUnderlyingType::Float32: setAttributeValueImpl<Float32>(attribute, id, value.get<Float64>()); break;
case AttributeUnderlyingType::Float64: setAttributeValueImpl<Float64>(attribute, id, value.get<Float64>()); break;
case AttributeUnderlyingType::String:
{
auto & array = *std::get<ContainerPtrType<StringRef>>(attribute.arrays);
if (id >= array.size())
array.resize_fill(id + 1, StringRef{std::get<String>(attribute.null_values)});
const auto & string = value.get<String>();
const auto string_in_arena = attribute.string_arena->insert(string.data(), string.size());
array[id] = StringRef{string_in_arena, string.size()};
break;
}
}
}
const attribute_t & getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{
name + ": no such attribute '" + attribute_name + "'",
ErrorCodes::BAD_ARGUMENTS
};
return attributes[it->second];
}
template <typename T>
void has(const attribute_t & attribute, const PODArray<id_t> & ids, PODArray<UInt8> & out) const
{
using stored_type = std::conditional_t<std::is_same<T, String>::value, StringRef, T>;
const auto & attr = *std::get<ContainerPtrType<stored_type>>(attribute.arrays);
const auto & null_value = std::get<T>(attribute.null_values);
const auto rows = ext::size(ids);
for (const auto i : ext::range(0, rows))
{
const auto id = ids[i];
out[i] = id < ext::size(attr) && attr[id] != null_value;
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
const std::string name;
const DictionaryStructure dict_struct;
const DictionarySourcePtr source_ptr;
const DictionaryLifetime dict_lifetime;
const bool require_nonempty;
std::map<std::string, std::size_t> attribute_index_by_name;
std::vector<attribute_t> attributes;
const attribute_t * hierarchical_attribute = nullptr;
2015-03-24 11:30:16 +00:00
std::size_t bytes_allocated = 0;
std::size_t element_count = 0;
std::size_t bucket_count = 0;
mutable std::atomic<std::size_t> query_count{0};
std::chrono::time_point<std::chrono::system_clock> creation_time;
std::exception_ptr creation_exception;
};
}