ClickHouse/docs/zh/operations/table_engines/kafka.md

140 lines
5.5 KiB
Markdown
Raw Normal View History

# Kafka
此引擎与 [Apache Kafka](http://kafka.apache.org/) 结合使用。
Kafka 特性:
- 发布或者订阅数据流。
- 容错存储机制。
- 处理流数据。
老版格式:
```
Kafka(kafka_broker_list, kafka_topic_list, kafka_group_name, kafka_format
[, kafka_row_delimiter, kafka_schema, kafka_num_consumers])
```
新版格式:
```
Kafka SETTINGS
kafka_broker_list = 'localhost:9092',
kafka_topic_list = 'topic1,topic2',
kafka_group_name = 'group1',
kafka_format = 'JSONEachRow',
2018-12-27 07:21:13 +00:00
kafka_row_delimiter = '\n',
kafka_schema = '',
kafka_num_consumers = 2
```
必要参数:
- `kafka_broker_list` 以逗号分隔的 brokers 列表 (`localhost:9092`)。
- `kafka_topic_list` topic 列表 (`my_topic`)。
- `kafka_group_name` Kafka 消费组名称 (`group1`)。如果不希望消息在集群中重复,请在每个分片中使用相同的组名。
- `kafka_format` 消息体格式。使用与 SQL 部分的 `FORMAT` 函数相同表示方法,例如 `JSONEachRow`。了解详细信息,请参考 `Formats` 部分。
可选参数:
- `kafka_row_delimiter` - 每个消息体(记录)之间的分隔符。
- `kafka_schema` 如果解析格式需要一个 schema 时,此参数必填。例如,[Cap'n Proto](https://capnproto.org/) 需要 schema 文件路径以及根对象 `schema.capnp:Message` 的名字。
- `kafka_num_consumers` 单个表的消费者数量。默认值是:`1`,如果一个消费者的吞吐量不足,则指定更多的消费者。消费者的总数不应该超过 topic 中分区的数量,因为每个分区只能分配一个消费者。
示例:
``` sql
CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
SELECT * FROM queue LIMIT 5;
CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka SETTINGS kafka_broker_list = 'localhost:9092',
kafka_topic_list = 'topic',
kafka_group_name = 'group1',
kafka_format = 'JSONEachRow',
kafka_num_consumers = 4;
CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1')
SETTINGS kafka_format = 'JSONEachRow',
kafka_num_consumers = 4;
```
消费的消息会被自动追踪,因此每个消息在不同的消费组里只会记录一次。如果希望获得两次数据,则使用另一个组名创建副本。
消费组可以灵活配置并且在集群之间同步。例如如果群集中有10个主题和5个表副本则每个副本将获得2个主题。 如果副本数量发生变化,主题将自动在副本中重新分配。了解更多信息请访问 [http://kafka.apache.org/intro](http://kafka.apache.org/intro)。
`SELECT` 查询对于读取消息并不是很有用(调试除外),因为每条消息只能被读取一次。使用物化视图创建实时线程更实用。您可以这样做:
1. 使用引擎创建一个 Kafka 消费者并作为一条数据流。
2. 创建一个结构表。
3. 创建物化视图,改视图会在后台转换引擎中的数据并将其放入之前创建的表中。
`MATERIALIZED VIEW` 添加至引擎,它将会在后台收集数据。可以持续不断地从 Kafka 收集数据并通过 `SELECT` 将数据转换为所需要的格式。
示例:
``` sql
CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
CREATE TABLE daily (
day Date,
level String,
total UInt64
) ENGINE = SummingMergeTree(day, (day, level), 8192);
CREATE MATERIALIZED VIEW consumer TO daily
AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total
FROM queue GROUP BY day, level;
SELECT level, sum(total) FROM daily GROUP BY level;
```
为了提高性能,接受的消息被分组为 [max_insert_block_size](../settings/settings.md#settings-max_insert_block_size) 大小的块。如果未在 [stream_flush_interval_ms](../settings/settings.md) 毫秒内形成块,则不关心块的完整性,都会将数据刷新到表中。
停止接收主题数据或更改转换逻辑,请 detach 物化视图:
```
DETACH TABLE consumer;
ATTACH MATERIALIZED VIEW consumer;
```
如果使用 `ALTER` 更改目标表,为了避免目标表与视图中的数据之间存在差异,推荐停止物化视图。
## 配置
`GraphiteMergeTree` 类似Kafka 引擎支持使用ClickHouse配置文件进行扩展配置。可以使用两个配置键全局 (`kafka`) 和 主题级别 (`kafka_*`)。首先应用全局配置,然后应用主题级配置(如果存在)。
```xml
<!-- Global configuration options for all tables of Kafka engine type -->
<kafka>
<debug>cgrp</debug>
<auto_offset_reset>smallest</auto_offset_reset>
</kafka>
<!-- Configuration specific for topic "logs" -->
<kafka_logs>
<retry_backoff_ms>250</retry_backoff_ms>
<fetch_min_bytes>100000</fetch_min_bytes>
</kafka_logs>
```
有关详细配置选项列表,请参阅 [librdkafka configuration reference](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md)。在 ClickHouse 配置中使用下划线 (`_`) ,并不是使用点 (`.`)。例如,`check.crcs=true` 将是 `<check_crcs>true</check_crcs>`
[Original article](https://clickhouse.yandex/docs/zh/operations/table_engines/kafka/) <!--hide-->