ClickHouse/docs/zh/engines/table-engines/integrations/hive.md

418 lines
13 KiB
Markdown
Raw Normal View History

---
2022-08-26 19:07:59 +00:00
slug: /zh/engines/table-engines/integrations/hive
2022-04-10 23:08:18 +00:00
sidebar_position: 4
sidebar_label: Hive
---
# Hive {#hive}
Hive引擎允许对HDFS Hive表执行 `SELECT` 查询。目前它支持如下输入格式:
-文本:只支持简单的标量列类型,除了 `Binary`
- ORC:支持简单的标量列类型,除了`char`; 只支持 `array` 这样的复杂类型
- Parquet:支持所有简单标量列类型;只支持 `array` 这样的复杂类型
## 创建表 {#creating-a-table}
``` sql
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
name1 [type1] [ALIAS expr1],
name2 [type2] [ALIAS expr2],
...
) ENGINE = Hive('thrift://host:port', 'database', 'table');
PARTITION BY expr
```
2022-08-29 17:59:51 +00:00
查看[CREATE TABLE](../../../sql-reference/statements/create/table.mdx#create-table-query)查询的详细描述。
表的结构可以与原来的Hive表结构有所不同:
- 列名应该与原来的Hive表相同但你可以使用这些列中的一些并以任何顺序你也可以使用一些从其他列计算的别名列。
- 列类型与原Hive表的列类型保持一致。
- “Partition by expression”应与原Hive表保持一致“Partition by expression”中的列应在表结构中。
**引擎参数**
- `thrift://host:port` — Hive Metastore 地址
- `database` — 远程数据库名.
- `table` — 远程数据表名.
## 使用示例 {#usage-example}
### 如何使用HDFS文件系统的本地缓存
我们强烈建议您为远程文件系统启用本地缓存。基准测试显示,如果使用缓存,它的速度会快两倍。
在使用缓存之前,请将其添加到 `config.xml`
``` xml
<local_cache_for_remote_fs>
<enable>true</enable>
<root_dir>local_cache</root_dir>
<limit_size>559096952</limit_size>
<bytes_read_before_flush>1048576</bytes_read_before_flush>
</local_cache_for_remote_fs>
```
- enable: 开启后ClickHouse将为HDFS (远程文件系统)维护本地缓存。
- root_dir: 必需的。用于存储远程文件系统的本地缓存文件的根目录。
- limit_size: 必需的。本地缓存文件的最大大小(单位为字节)。
- bytes_read_before_flush: 从远程文件系统下载文件时刷新到本地文件系统前的控制字节数。缺省值为1MB。
当ClickHouse为远程文件系统启用了本地缓存时用户仍然可以选择不使用缓存并在查询中设置`use_local_cache_for_remote_fs = 0 `, `use_local_cache_for_remote_fs` 默认为 `false`
### 查询 ORC 输入格式的Hive 表
#### 在 Hive 中建表
``` text
hive > CREATE TABLE `test`.`test_orc`(
`f_tinyint` tinyint,
`f_smallint` smallint,
`f_int` int,
`f_integer` int,
`f_bigint` bigint,
`f_float` float,
`f_double` double,
`f_decimal` decimal(10,0),
`f_timestamp` timestamp,
`f_date` date,
`f_string` string,
`f_varchar` varchar(100),
`f_bool` boolean,
`f_binary` binary,
`f_array_int` array<int>,
`f_array_string` array<string>,
`f_array_float` array<float>,
`f_array_array_int` array<array<int>>,
`f_array_array_string` array<array<string>>,
`f_array_array_float` array<array<float>>)
PARTITIONED BY (
`day` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
'hdfs://testcluster/data/hive/test.db/test_orc'
OK
Time taken: 0.51 seconds
hive > insert into test.test_orc partition(day='2021-09-18') select 1, 2, 3, 4, 5, 6.11, 7.22, 8.333, current_timestamp(), current_date(), 'hello world', 'hello world', 'hello world', true, 'hello world', array(1, 2, 3), array('hello world', 'hello world'), array(float(1.1), float(1.2)), array(array(1, 2), array(3, 4)), array(array('a', 'b'), array('c', 'd')), array(array(float(1.11), float(2.22)), array(float(3.33), float(4.44)));
OK
Time taken: 36.025 seconds
hive > select * from test.test_orc;
OK
1 2 3 4 5 6.11 7.22 8 2021-11-05 12:38:16.314 2021-11-05 hello world hello world hello world true hello world [1,2,3] ["hello world","hello world"] [1.1,1.2] [[1,2],[3,4]] [["a","b"],["c","d"]] [[1.11,2.22],[3.33,4.44]] 2021-09-18
Time taken: 0.295 seconds, Fetched: 1 row(s)
```
#### 在 ClickHouse 中建表
ClickHouse中的表从上面创建的Hive表中获取数据:
``` sql
CREATE TABLE test.test_orc
(
`f_tinyint` Int8,
`f_smallint` Int16,
`f_int` Int32,
`f_integer` Int32,
`f_bigint` Int64,
`f_float` Float32,
`f_double` Float64,
`f_decimal` Float64,
`f_timestamp` DateTime,
`f_date` Date,
`f_string` String,
`f_varchar` String,
`f_bool` Bool,
`f_binary` String,
`f_array_int` Array(Int32),
`f_array_string` Array(String),
`f_array_float` Array(Float32),
`f_array_array_int` Array(Array(Int32)),
`f_array_array_string` Array(Array(String)),
`f_array_array_float` Array(Array(Float32)),
`day` String
)
2022-03-24 09:17:25 +00:00
ENGINE = Hive('thrift://localhost:9083', 'test', 'test_orc')
PARTITION BY day
```
``` sql
SELECT * FROM test.test_orc settings input_format_orc_allow_missing_columns = 1\G
```
``` text
SELECT *
FROM test.test_orc
SETTINGS input_format_orc_allow_missing_columns = 1
Query id: c3eaffdc-78ab-43cd-96a4-4acc5b480658
Row 1:
──────
f_tinyint: 1
f_smallint: 2
f_int: 3
f_integer: 4
f_bigint: 5
f_float: 6.11
f_double: 7.22
f_decimal: 8
f_timestamp: 2021-12-04 04:00:44
f_date: 2021-12-03
f_string: hello world
f_varchar: hello world
f_bool: true
f_binary: hello world
f_array_int: [1,2,3]
f_array_string: ['hello world','hello world']
f_array_float: [1.1,1.2]
f_array_array_int: [[1,2],[3,4]]
f_array_array_string: [['a','b'],['c','d']]
f_array_array_float: [[1.11,2.22],[3.33,4.44]]
day: 2021-09-18
1 rows in set. Elapsed: 0.078 sec.
```
### 查询 Parquest 输入格式的Hive 表
#### 在 Hive 中建表
``` text
hive >
CREATE TABLE `test`.`test_parquet`(
`f_tinyint` tinyint,
`f_smallint` smallint,
`f_int` int,
`f_integer` int,
`f_bigint` bigint,
`f_float` float,
`f_double` double,
`f_decimal` decimal(10,0),
`f_timestamp` timestamp,
`f_date` date,
`f_string` string,
`f_varchar` varchar(100),
`f_char` char(100),
`f_bool` boolean,
`f_binary` binary,
`f_array_int` array<int>,
`f_array_string` array<string>,
`f_array_float` array<float>,
`f_array_array_int` array<array<int>>,
`f_array_array_string` array<array<string>>,
`f_array_array_float` array<array<float>>)
PARTITIONED BY (
`day` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'hdfs://testcluster/data/hive/test.db/test_parquet'
OK
Time taken: 0.51 seconds
hive > insert into test.test_parquet partition(day='2021-09-18') select 1, 2, 3, 4, 5, 6.11, 7.22, 8.333, current_timestamp(), current_date(), 'hello world', 'hello world', 'hello world', true, 'hello world', array(1, 2, 3), array('hello world', 'hello world'), array(float(1.1), float(1.2)), array(array(1, 2), array(3, 4)), array(array('a', 'b'), array('c', 'd')), array(array(float(1.11), float(2.22)), array(float(3.33), float(4.44)));
OK
Time taken: 36.025 seconds
hive > select * from test.test_parquet;
OK
1 2 3 4 5 6.11 7.22 8 2021-12-14 17:54:56.743 2021-12-14 hello world hello world hello world true hello world [1,2,3] ["hello world","hello world"] [1.1,1.2] [[1,2],[3,4]] [["a","b"],["c","d"]] [[1.11,2.22],[3.33,4.44]] 2021-09-18
Time taken: 0.766 seconds, Fetched: 1 row(s)
```
#### 在 ClickHouse 中建表
ClickHouse 中的表, 从上面创建的Hive表中获取数据:
``` sql
CREATE TABLE test.test_parquet
(
`f_tinyint` Int8,
`f_smallint` Int16,
`f_int` Int32,
`f_integer` Int32,
`f_bigint` Int64,
`f_float` Float32,
`f_double` Float64,
`f_decimal` Float64,
`f_timestamp` DateTime,
`f_date` Date,
`f_string` String,
`f_varchar` String,
`f_char` String,
`f_bool` Bool,
`f_binary` String,
`f_array_int` Array(Int32),
`f_array_string` Array(String),
`f_array_float` Array(Float32),
`f_array_array_int` Array(Array(Int32)),
`f_array_array_string` Array(Array(String)),
`f_array_array_float` Array(Array(Float32)),
`day` String
)
ENGINE = Hive('thrift://localhost:9083', 'test', 'test_parquet')
PARTITION BY day
```
``` sql
SELECT * FROM test.test_parquet settings input_format_parquet_allow_missing_columns = 1\G
```
``` text
SELECT *
FROM test_parquet
SETTINGS input_format_parquet_allow_missing_columns = 1
Query id: 4e35cf02-c7b2-430d-9b81-16f438e5fca9
Row 1:
──────
f_tinyint: 1
f_smallint: 2
f_int: 3
f_integer: 4
f_bigint: 5
f_float: 6.11
f_double: 7.22
f_decimal: 8
f_timestamp: 2021-12-14 17:54:56
f_date: 2021-12-14
f_string: hello world
f_varchar: hello world
f_char: hello world
f_bool: true
f_binary: hello world
f_array_int: [1,2,3]
f_array_string: ['hello world','hello world']
f_array_float: [1.1,1.2]
f_array_array_int: [[1,2],[3,4]]
f_array_array_string: [['a','b'],['c','d']]
f_array_array_float: [[1.11,2.22],[3.33,4.44]]
day: 2021-09-18
1 rows in set. Elapsed: 0.357 sec.
```
### 查询文本输入格式的Hive表
#### 在Hive 中建表
``` text
hive >
CREATE TABLE `test`.`test_text`(
`f_tinyint` tinyint,
`f_smallint` smallint,
`f_int` int,
`f_integer` int,
`f_bigint` bigint,
`f_float` float,
`f_double` double,
`f_decimal` decimal(10,0),
`f_timestamp` timestamp,
`f_date` date,
`f_string` string,
`f_varchar` varchar(100),
`f_char` char(100),
`f_bool` boolean,
`f_binary` binary,
`f_array_int` array<int>,
`f_array_string` array<string>,
`f_array_float` array<float>,
`f_array_array_int` array<array<int>>,
`f_array_array_string` array<array<string>>,
`f_array_array_float` array<array<float>>)
PARTITIONED BY (
`day` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
'hdfs://testcluster/data/hive/test.db/test_text'
Time taken: 0.1 seconds, Fetched: 34 row(s)
hive > insert into test.test_text partition(day='2021-09-18') select 1, 2, 3, 4, 5, 6.11, 7.22, 8.333, current_timestamp(), current_date(), 'hello world', 'hello world', 'hello world', true, 'hello world', array(1, 2, 3), array('hello world', 'hello world'), array(float(1.1), float(1.2)), array(array(1, 2), array(3, 4)), array(array('a', 'b'), array('c', 'd')), array(array(float(1.11), float(2.22)), array(float(3.33), float(4.44)));
OK
Time taken: 36.025 seconds
hive > select * from test.test_text;
OK
1 2 3 4 5 6.11 7.22 8 2021-12-14 18:11:17.239 2021-12-14 hello world hello world hello world true hello world [1,2,3] ["hello world","hello world"] [1.1,1.2] [[1,2],[3,4]] [["a","b"],["c","d"]] [[1.11,2.22],[3.33,4.44]] 2021-09-18
Time taken: 0.624 seconds, Fetched: 1 row(s)
```
#### 在 ClickHouse 中建表
ClickHouse中的表 从上面创建的Hive表中获取数据:
``` sql
CREATE TABLE test.test_text
(
`f_tinyint` Int8,
`f_smallint` Int16,
`f_int` Int32,
`f_integer` Int32,
`f_bigint` Int64,
`f_float` Float32,
`f_double` Float64,
`f_decimal` Float64,
`f_timestamp` DateTime,
`f_date` Date,
`f_string` String,
`f_varchar` String,
`f_char` String,
`f_bool` Bool,
`day` String
)
ENGINE = Hive('thrift://localhost:9083', 'test', 'test_text')
PARTITION BY day
```
``` sql
SELECT * FROM test.test_text settings input_format_skip_unknown_fields = 1, input_format_with_names_use_header = 1, date_time_input_format = 'best_effort'\G
```
``` text
SELECT *
FROM test.test_text
SETTINGS input_format_skip_unknown_fields = 1, input_format_with_names_use_header = 1, date_time_input_format = 'best_effort'
Query id: 55b79d35-56de-45b9-8be6-57282fbf1f44
Row 1:
──────
f_tinyint: 1
f_smallint: 2
f_int: 3
f_integer: 4
f_bigint: 5
f_float: 6.11
f_double: 7.22
f_decimal: 8
f_timestamp: 2021-12-14 18:11:17
f_date: 2021-12-14
f_string: hello world
f_varchar: hello world
f_char: hello world
f_bool: true
day: 2021-09-18
```