Provides a table-like interface to select/insert files in [Amazon S3](https://aws.amazon.com/s3/) and [Google Cloud Storage](https://cloud.google.com/storage/). This table function is similar to the [hdfs function](../../sql-reference/table-functions/hdfs.md), but provides S3-specific features.
The S3 Table Function integrates with Google Cloud Storage by using the GCS XML API and HMAC keys. See the [Google interoperability docs]( https://cloud.google.com/storage/docs/interoperability) for more details about the endpoint and HMAC.
For GCS, substitute your HMAC key and HMAC secret where you see `aws_access_key_id` and `aws_secret_access_key`.
-`path` — Bucket url with path to file. Supports following wildcards in readonly mode: `*`, `**`, `?`, `{abc,def}` and `{N..M}` where `N`, `M` — numbers, `'abc'`, `'def'` — strings. For more information see [here](../../engines/table-engines/integrations/s3.md#wildcards-in-path).
-`format` — The [format](../../interfaces/formats.md#formats) of the file.
-`structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`.
-`compression` — Parameter is optional. Supported values: `none`, `gzip/gz`, `brotli/br`, `xz/LZMA`, `zstd/zst`. By default, it will autodetect compression by file extension.
ClickHouse uses filename extensions to determine the format of the data. For example, we could have run the previous command without the `CSVWithNames`:
ClickHouse also can determine the compression of the file. For example, if the file was zipped up with a `.csv.gz` extension, ClickHouse would decompress the file automatically.
FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/{some,another}_prefix/some_file_{1..3}.csv', 'CSV', 'name String, value UInt32')
INSERT INTO FUNCTION s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
INSERT INTO FUNCTION s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip')
Glob ** can be used for recursive directory traversal. Consider the below example, it will fetch all files from `my-test-bucket-768` directory recursively:
``` sql
SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**', 'CSV', 'name String, value UInt32', 'gzip');
```
The below get data from all `test-data.csv.gz` files from any folder inside `my-test-bucket` directory recursively:
``` sql
SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip');
The URL `'s3://clickhouse-public-datasets/my-test-bucket-768/**/test-data.csv.gz'` would be replaced to `'http://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**/test-data.csv.gz'`
If you specify `PARTITION BY` expression when inserting data into `S3` table, a separate file is created for each partition value. Splitting the data into separate files helps to improve reading operations efficiency.
- [s3_truncate_on_insert](/docs/en/operations/settings/settings.md#s3-truncate-on-insert) - allows to truncate file before insert into it. Disabled by default.
- [s3_create_multiple_files](/docs/en/operations/settings/settings.md#s3_allow_create_multiple_files) - allows to create a new file on each insert if format has suffix. Disabled by default.
- [s3_skip_empty_files](/docs/en/operations/settings/settings.md#s3_skip_empty_files) - allows to skip empty files while reading. Disabled by default.