ClickHouse/dbms/src/Functions/IFunction.h

232 lines
10 KiB
C++
Raw Normal View History

2011-08-09 15:57:33 +00:00
#pragma once
#include <memory>
2011-08-09 19:19:00 +00:00
#include <Core/Names.h>
#include <Core/Block.h>
#include <Core/ColumnNumbers.h>
#include <Core/ColumnsWithTypeAndName.h>
#include <DataTypes/IDataType.h>
2011-08-09 15:57:33 +00:00
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int ILLEGAL_COLUMN;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int FUNCTION_CANNOT_HAVE_PARAMETERS;
extern const int TOO_LESS_ARGUMENTS_FOR_FUNCTION;
}
2016-03-07 04:31:10 +00:00
struct ExpressionAction;
2015-05-04 17:52:19 +00:00
2017-05-28 14:32:59 +00:00
/** Interface for normal functions.
* Normal functions are functions that do not change the number of rows in the table,
* and the result of which for each row does not depend on other rows.
2011-08-09 15:57:33 +00:00
*
2017-05-28 14:32:59 +00:00
* A function can take an arbitrary number of arguments; returns exactly one value.
* The type of the result depends on the type and number of arguments.
2011-08-09 15:57:33 +00:00
*
2017-05-28 14:32:59 +00:00
* The function is dispatched for the whole block. This allows you to perform all kinds of checks rarely,
* and do the main job as an efficient loop.
2011-08-09 15:57:33 +00:00
*
2017-05-28 14:32:59 +00:00
* The function is applied to one or more columns of the block, and writes its result,
* adding a new column to the block. The function does not modify its arguments.
2011-08-09 15:57:33 +00:00
*/
class IFunction
{
public:
2017-05-28 14:32:59 +00:00
/** The successor of IFunction must implement:
* - getName
2017-05-28 14:32:59 +00:00
* - either getReturnType, or getReturnTypeAndPrerequisites
* - one of the overloads of `execute`.
*/
2017-05-28 14:32:59 +00:00
/// Get the main function name.
virtual String getName() const = 0;
/// Override and return true if function could take different number of arguments.
virtual bool isVariadic() const { return false; }
/// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored).
virtual size_t getNumberOfArguments() const = 0;
/// Throw if number of arguments is incorrect. Default implementation will check only in non-variadic case.
/// It is called inside getReturnType.
virtual void checkNumberOfArguments(size_t number_of_arguments) const;
/** Should we evaluate this function while constant folding, if arguments are constants?
* Usually this is true. Notable counterexample is function 'sleep'.
* If we will call it during query analysis, we will sleep extra amount of time.
*/
virtual bool isSuitableForConstantFolding() const { return true; }
/** Function is called "injective" if it returns different result for different values of arguments.
* Example: hex, negate, tuple...
*
* Function could be injective with some arguments fixed to some constant values.
* Examples:
* plus(const, x);
* multiply(const, x) where x is an integer and constant is not divisable by two;
* concat(x, 'const');
* concat(x, 'const', y) where const contain at least one non-numeric character;
* concat with FixedString
* dictGet... functions takes name of dictionary as its argument,
* and some dictionaries could be explicitly defined as injective.
*
* It could be used, for example, to remove useless function applications from GROUP BY.
*
* Sometimes, function is not really injective, but considered as injective, for purpose of query optimization.
* For example, toString function is not injective for Float64 data type,
* as it returns 'nan' for many different representation of NaNs.
* But we assume, that it is injective. This could be documented as implementation-specific behaviour.
*
* sample_block should contain data types of arguments and values of constants, if relevant.
*/
virtual bool isInjective(const Block & sample_block) { return false; }
/** Function is called "deterministic", if it returns same result for same values of arguments.
* Most of functions are deterministic. Notable counterexample is rand().
* Sometimes, functions are "deterministic" in scope of single query
* (even for distributed query), but not deterministic it general.
* Example: now(). Another example: functions that work with periodically updated dictionaries.
*/
virtual bool isDeterministicInScopeOfQuery() { return true; }
2017-05-28 14:32:59 +00:00
/// Get the result type by argument type. If the function does not apply to these arguments, throw an exception.
/// Overloading for those who do not need prerequisites and values of constant arguments. Not called from outside.
DataTypePtr getReturnType(const DataTypes & arguments) const;
virtual DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const
{
throw Exception("getReturnType is not implemented for " + getName(), ErrorCodes::NOT_IMPLEMENTED);
}
2017-05-28 14:32:59 +00:00
/** Get the result type by argument types and constant argument values.
* If the function does not apply to these arguments, throw an exception.
* You can also return a description of the additional columns that are required to perform the function.
* For non-constant columns `arguments[i].column = nullptr`.
* Meaningful element types in out_prerequisites: APPLY_FUNCTION, ADD_COLUMN.
*/
void getReturnTypeAndPrerequisites(
const ColumnsWithTypeAndName & arguments,
DataTypePtr & out_return_type,
std::vector<ExpressionAction> & out_prerequisites);
virtual void getReturnTypeAndPrerequisitesImpl(
const ColumnsWithTypeAndName & arguments,
DataTypePtr & out_return_type,
std::vector<ExpressionAction> & out_prerequisites)
{
DataTypes types(arguments.size());
for (size_t i = 0; i < arguments.size(); ++i)
types[i] = arguments[i].type;
out_return_type = getReturnTypeImpl(types);
}
/// For higher-order functions (functions, that have lambda expression as at least one argument).
/// You pass data types with empty DataTypeExpression for lambda arguments.
/// This function will replace it with DataTypeExpression containing actual types.
void getLambdaArgumentTypes(DataTypes & arguments) const;
virtual void getLambdaArgumentTypesImpl(DataTypes & arguments) const
{
throw Exception("Function " + getName() + " can't have lambda-expressions as arguments", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
2017-05-28 14:32:59 +00:00
/// Execute the function on the block. Note: can be called simultaneously from several threads, for one object.
/// Overloading for those who do not need `prerequisites`. Not called from outside.
void execute(Block & block, const ColumnNumbers & arguments, size_t result);
2017-05-28 14:32:59 +00:00
/// Execute the function above the block. Note: can be called simultaneously from several threads, for one object.
/// `prerequisites` go in the same order as `out_prerequisites` obtained from getReturnTypeAndPrerequisites.
void execute(Block & block, const ColumnNumbers & arguments, const ColumnNumbers & prerequisites, size_t result);
virtual void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
throw Exception("executeImpl is not implemented for " + getName(), ErrorCodes::NOT_IMPLEMENTED);
}
virtual void executeImpl(Block & block, const ColumnNumbers & arguments, const ColumnNumbers & prerequisites, size_t result)
{
executeImpl(block, arguments, result);
}
/// Returns true if the function implementation directly handles the arguments
/// that correspond to nullable columns and null columns.
virtual bool hasSpecialSupportForNulls() const { return false; }
2017-05-28 14:32:59 +00:00
/** Lets you know if the function is monotonic in a range of values.
* This is used to work with the index in a sorted chunk of data.
* And allows to use the index not only when it is written, for example `date >= const`, but also, for example, `toMonth(date) >= 11`.
* All this is considered only for functions of one argument.
*/
virtual bool hasInformationAboutMonotonicity() const { return false; }
2017-05-28 14:32:59 +00:00
/// The property of monotonicity for a certain range.
struct Monotonicity
{
2017-05-28 14:32:59 +00:00
bool is_monotonic = false; /// Is the function monotonous (nondecreasing or nonincreasing).
bool is_positive = true; /// true if the function is nondecreasing, false, if notincreasing. If is_monotonic = false, then it does not matter.
Monotonicity(bool is_monotonic_ = false, bool is_positive_ = true)
: is_monotonic(is_monotonic_), is_positive(is_positive_) {}
};
2017-05-28 14:32:59 +00:00
/** Get information about monotonicity on a range of values. Call only if hasInformationAboutMonotonicity.
* NULL can be passed as one of the arguments. This means that the corresponding range is unlimited on the left or on the right.
*/
virtual Monotonicity getMonotonicityForRange(const IDataType & type, const Field & left, const Field & right) const
{
throw Exception("Function " + getName() + " has no information about its monotonicity.", ErrorCodes::NOT_IMPLEMENTED);
}
virtual ~IFunction() {}
2016-08-05 11:31:55 +00:00
protected:
/// Returns the copy of a given block in which each column specified in
/// the "arguments" parameter is replaced with its respective nested
/// column if it is nullable.
static Block createBlockWithNestedColumns(const Block & block, ColumnNumbers args);
/// Similar function as above. Additionally transform the result type if needed.
static Block createBlockWithNestedColumns(const Block & block, ColumnNumbers args, size_t result);
2016-08-05 11:31:55 +00:00
private:
/// Strategy to apply when executing a function.
enum Strategy
{
/// Merely perform the function on its columns.
DIRECTLY_EXECUTE = 0,
/// If at least one argument is nullable, call the function implementation
/// with a block in which nullable columns that correspond to function arguments
/// have been replaced with their respective nested columns. Subsequently, the
/// result column is wrapped into a nullable column.
PROCESS_NULLABLE_COLUMNS,
/// If at least one argument is NULL, return NULL.
RETURN_NULL
};
private:
/// Choose the strategy for performing the function.
Strategy chooseStrategy(const Block & block, const ColumnNumbers & args);
/// If required by the specified strategy, process the given block, then
/// return the processed block. Otherwise return an empty block.
Block preProcessBlock(Strategy strategy, const Block & block, const ColumnNumbers & args,
size_t result);
/// If required by the specified strategy, post-process the result column.
void postProcessResult(Strategy strategy, Block & block, const Block & processed_block,
const ColumnNumbers & args, size_t result);
2011-08-09 15:57:33 +00:00
};
using FunctionPtr = std::shared_ptr<IFunction>;
2011-08-09 19:19:00 +00:00
2011-08-09 15:57:33 +00:00
}