2020-04-03 13:23:32 +00:00
---
2022-08-28 14:53:34 +00:00
slug: /en/getting-started/example-datasets/nyc-taxi
2022-04-09 13:29:05 +00:00
sidebar_label: New York Taxi Data
2022-05-12 18:32:13 +00:00
sidebar_position: 2
2022-04-09 13:29:05 +00:00
description: Data for billions of taxi and for-hire vehicle (Uber, Lyft, etc.) trips originating in New York City since 2009
2020-04-03 13:23:32 +00:00
---
2023-03-09 13:31:28 +00:00
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
2022-10-04 11:36:59 +00:00
# New York Taxi Data
The New York taxi data consists of 3+ billion taxi and for-hire vehicle (Uber, Lyft, etc.) trips originating in New York City since 2009. The dataset can be obtained in a couple of ways:
2023-03-09 13:31:28 +00:00
- insert the data directly into ClickHouse Cloud from S3 or GCS
2022-10-04 11:36:59 +00:00
- download prepared partitions
2023-03-09 13:31:28 +00:00
## Create the table trips
2022-10-04 11:36:59 +00:00
2023-03-09 13:31:28 +00:00
Start by creating a table for the taxi rides:
2022-10-04 11:36:59 +00:00
```sql
CREATE TABLE trips (
trip_id UInt32,
pickup_datetime DateTime,
dropoff_datetime DateTime,
pickup_longitude Nullable(Float64),
pickup_latitude Nullable(Float64),
dropoff_longitude Nullable(Float64),
dropoff_latitude Nullable(Float64),
passenger_count UInt8,
trip_distance Float32,
fare_amount Float32,
extra Float32,
tip_amount Float32,
tolls_amount Float32,
total_amount Float32,
2022-11-01 10:03:17 +00:00
payment_type Enum('CSH' = 1, 'CRE' = 2, 'NOC' = 3, 'DIS' = 4, 'UNK' = 5),
2022-10-04 11:36:59 +00:00
pickup_ntaname LowCardinality(String),
dropoff_ntaname LowCardinality(String)
)
ENGINE = MergeTree
2023-03-09 13:31:28 +00:00
PRIMARY KEY (pickup_datetime, dropoff_datetime);
```
2023-03-09 13:34:05 +00:00
## Load the Data directly from Object Storage
2023-03-09 13:31:28 +00:00
Let's grab a small subset of the data for getting familiar with it. The data is in TSV files in object storage, which is easily streamed into
ClickHouse Cloud using the `s3` table function.
The same data is stored in both S3 and GCS; choose either tab.
< Tabs groupId = "storageVendor" >
< TabItem value = "gcs" label = "GCS" default >
The following command streams three files from a GCS bucket into the `trips` table (the `{0..2}` syntax is a wildcard for the values 0, 1, and 2):
```sql
INSERT INTO trips
SELECT
trip_id,
pickup_datetime,
dropoff_datetime,
pickup_longitude,
pickup_latitude,
dropoff_longitude,
dropoff_latitude,
passenger_count,
trip_distance,
fare_amount,
extra,
tip_amount,
tolls_amount,
total_amount,
payment_type,
pickup_ntaname,
dropoff_ntaname
FROM s3(
'https://storage.googleapis.com/clickhouse-public-datasets/nyc-taxi/trips_{0..2}.gz',
'TabSeparatedWithNames'
);
2017-12-28 15:13:23 +00:00
```
2023-03-09 13:31:28 +00:00
< / TabItem >
< TabItem value = "s3" label = "S3" >
2022-10-04 11:36:59 +00:00
The following command streams three files from an S3 bucket into the `trips` table (the `{0..2}` syntax is a wildcard for the values 0, 1, and 2):
```sql
INSERT INTO trips
SELECT
trip_id,
pickup_datetime,
dropoff_datetime,
pickup_longitude,
pickup_latitude,
dropoff_longitude,
dropoff_latitude,
passenger_count,
trip_distance,
fare_amount,
extra,
tip_amount,
tolls_amount,
total_amount,
payment_type,
pickup_ntaname,
dropoff_ntaname
2022-11-01 10:03:17 +00:00
FROM s3(
2022-10-04 11:36:59 +00:00
'https://datasets-documentation.s3.eu-west-3.amazonaws.com/nyc-taxi/trips_{0..2}.gz',
'TabSeparatedWithNames'
2023-03-09 13:31:28 +00:00
);
2017-12-28 15:13:23 +00:00
```
2023-03-09 13:31:28 +00:00
< / TabItem >
< / Tabs >
2022-10-04 11:36:59 +00:00
Let's see how many rows were inserted:
2017-12-28 15:13:23 +00:00
2022-10-04 11:36:59 +00:00
```sql
SELECT count()
2023-03-09 13:31:28 +00:00
FROM trips;
2022-10-04 11:36:59 +00:00
```
2017-12-28 15:13:23 +00:00
2022-10-04 11:36:59 +00:00
Each TSV file has about 1M rows, and the three files have 3,000,317 rows. Let's look at a few rows:
2017-12-28 15:13:23 +00:00
2022-10-04 11:36:59 +00:00
```sql
SELECT *
FROM trips
2023-03-09 13:31:28 +00:00
LIMIT 10;
2017-12-28 15:13:23 +00:00
```
2022-10-04 11:36:59 +00:00
Notice there are columns for the pickup and dropoff dates, geo coordinates, fare details, New York neighborhoods, and more:
```response
┌────trip_id─┬─────pickup_datetime─┬────dropoff_datetime─┬───pickup_longitude─┬────pickup_latitude─┬──dropoff_longitude─┬───dropoff_latitude─┬─passenger_count─┬─trip_distance─┬─fare_amount─┬─extra─┬─tip_amount─┬─tolls_amount─┬─total_amount─┬─payment_type─┬─pickup_ntaname─────────────────────────────┬─dropoff_ntaname────────────────────────────┐
│ 1200864931 │ 2015-07-01 00:00:13 │ 2015-07-01 00:14:41 │ -73.99046325683594 │ 40.746116638183594 │ -73.97918701171875 │ 40.78467559814453 │ 5 │ 3.54 │ 13.5 │ 0.5 │ 1 │ 0 │ 15.8 │ CSH │ Midtown-Midtown South │ Upper West Side │
│ 1200018648 │ 2015-07-01 00:00:16 │ 2015-07-01 00:02:57 │ -73.78358459472656 │ 40.648677825927734 │ -73.80242919921875 │ 40.64767837524414 │ 1 │ 1.45 │ 6 │ 0.5 │ 0 │ 0 │ 7.3 │ CRE │ Airport │ Airport │
│ 1201452450 │ 2015-07-01 00:00:20 │ 2015-07-01 00:11:07 │ -73.98579406738281 │ 40.72777557373047 │ -74.00482177734375 │ 40.73748779296875 │ 5 │ 1.56 │ 8.5 │ 0.5 │ 1.96 │ 0 │ 11.76 │ CSH │ East Village │ West Village │
│ 1202368372 │ 2015-07-01 00:00:40 │ 2015-07-01 00:05:46 │ -74.00206756591797 │ 40.73833084106445 │ -74.00658416748047 │ 40.74875259399414 │ 2 │ 1 │ 6 │ 0.5 │ 0 │ 0 │ 7.3 │ CRE │ West Village │ Hudson Yards-Chelsea-Flatiron-Union Square │
│ 1200831168 │ 2015-07-01 00:01:06 │ 2015-07-01 00:09:23 │ -73.98748016357422 │ 40.74344253540039 │ -74.00575256347656 │ 40.716793060302734 │ 1 │ 2.3 │ 9 │ 0.5 │ 2 │ 0 │ 12.3 │ CSH │ Hudson Yards-Chelsea-Flatiron-Union Square │ SoHo-TriBeCa-Civic Center-Little Italy │
│ 1201362116 │ 2015-07-01 00:01:07 │ 2015-07-01 00:03:31 │ -73.9926986694336 │ 40.75826644897461 │ -73.98628997802734 │ 40.76075744628906 │ 1 │ 0.6 │ 4 │ 0.5 │ 0 │ 0 │ 5.3 │ CRE │ Clinton │ Midtown-Midtown South │
│ 1200639419 │ 2015-07-01 00:01:13 │ 2015-07-01 00:03:56 │ -74.00382995605469 │ 40.741981506347656 │ -73.99711608886719 │ 40.742271423339844 │ 1 │ 0.49 │ 4 │ 0.5 │ 0 │ 0 │ 5.3 │ CRE │ Hudson Yards-Chelsea-Flatiron-Union Square │ Hudson Yards-Chelsea-Flatiron-Union Square │
│ 1201181622 │ 2015-07-01 00:01:17 │ 2015-07-01 00:05:12 │ -73.9512710571289 │ 40.78261947631836 │ -73.95230865478516 │ 40.77476119995117 │ 4 │ 0.97 │ 5 │ 0.5 │ 1 │ 0 │ 7.3 │ CSH │ Upper East Side-Carnegie Hill │ Yorkville │
│ 1200978273 │ 2015-07-01 00:01:28 │ 2015-07-01 00:09:46 │ -74.00822448730469 │ 40.72113037109375 │ -74.00422668457031 │ 40.70782470703125 │ 1 │ 1.71 │ 8.5 │ 0.5 │ 1.96 │ 0 │ 11.76 │ CSH │ SoHo-TriBeCa-Civic Center-Little Italy │ Battery Park City-Lower Manhattan │
│ 1203283366 │ 2015-07-01 00:01:47 │ 2015-07-01 00:24:26 │ -73.98199462890625 │ 40.77289962768555 │ -73.91968536376953 │ 40.766082763671875 │ 3 │ 5.26 │ 19.5 │ 0.5 │ 5.2 │ 0 │ 26 │ CSH │ Lincoln Square │ Astoria │
└────────────┴─────────────────────┴─────────────────────┴────────────────────┴────────────────────┴────────────────────┴────────────────────┴─────────────────┴───────────────┴─────────────┴───────┴────────────┴──────────────┴──────────────┴──────────────┴────────────────────────────────────────────┴────────────────────────────────────────────┘
```
2017-12-28 15:13:23 +00:00
2022-10-04 11:36:59 +00:00
Let's run a few queries. This query shows us the top 10 neighborhoods that have the most frequent pickups:
2017-12-28 15:13:23 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2022-10-04 11:36:59 +00:00
SELECT
pickup_ntaname,
count(*) AS count
FROM trips
GROUP BY pickup_ntaname
ORDER BY count DESC
2023-03-09 13:31:28 +00:00
LIMIT 10;
2017-12-28 15:13:23 +00:00
```
2022-10-04 11:36:59 +00:00
The result is:
```response
┌─pickup_ntaname─────────────────────────────┬──count─┐
│ Midtown-Midtown South │ 526864 │
│ Hudson Yards-Chelsea-Flatiron-Union Square │ 288797 │
│ West Village │ 210436 │
│ Turtle Bay-East Midtown │ 197111 │
│ Upper East Side-Carnegie Hill │ 184327 │
│ Airport │ 151343 │
│ SoHo-TriBeCa-Civic Center-Little Italy │ 144967 │
│ Murray Hill-Kips Bay │ 138599 │
│ Upper West Side │ 135469 │
│ Clinton │ 130002 │
└────────────────────────────────────────────┴────────┘
2017-12-28 15:13:23 +00:00
```
2022-10-04 11:36:59 +00:00
This query shows the average fare based on the number of passengers:
2017-12-28 15:13:23 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2022-10-04 11:36:59 +00:00
SELECT
passenger_count,
avg(total_amount)
2017-12-28 15:13:23 +00:00
FROM trips
2023-03-09 13:31:28 +00:00
GROUP BY passenger_count;
2017-12-28 15:13:23 +00:00
```
2022-10-04 11:36:59 +00:00
```response
┌─passenger_count─┬──avg(total_amount)─┐
│ 0 │ 25.226335263065018 │
│ 1 │ 15.961279340656672 │
│ 2 │ 17.146174183960667 │
│ 3 │ 17.65380033178517 │
│ 4 │ 17.248804201047456 │
│ 5 │ 16.353501285179135 │
│ 6 │ 15.995094439202836 │
│ 7 │ 62.077143805367605 │
│ 8 │ 26.120000791549682 │
│ 9 │ 10.300000190734863 │
└─────────────────┴────────────────────┘
```
2017-12-28 15:13:23 +00:00
2022-10-04 11:36:59 +00:00
Here's a correlation between the number of passengers and the distance of the trip:
2017-12-28 15:13:23 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2022-10-04 11:36:59 +00:00
SELECT
passenger_count,
toYear(pickup_datetime) AS year,
round(trip_distance) AS distance,
count(*)
FROM trips
GROUP BY passenger_count, year, distance
2023-03-09 13:31:28 +00:00
ORDER BY year, count(*) DESC;
2018-10-16 10:47:17 +00:00
```
2020-03-20 10:10:48 +00:00
2022-10-04 11:36:59 +00:00
The first part of the result is:
```response
┌─passenger_count─┬─year─┬─distance─┬─count()─┐
│ 1 │ 2015 │ 1 │ 748644 │
│ 1 │ 2015 │ 2 │ 521602 │
│ 1 │ 2015 │ 3 │ 225077 │
│ 2 │ 2015 │ 1 │ 144990 │
│ 1 │ 2015 │ 4 │ 134782 │
│ 1 │ 2015 │ 0 │ 127284 │
│ 2 │ 2015 │ 2 │ 106411 │
│ 1 │ 2015 │ 5 │ 72725 │
│ 5 │ 2015 │ 1 │ 59343 │
│ 1 │ 2015 │ 6 │ 53447 │
│ 2 │ 2015 │ 3 │ 48019 │
│ 3 │ 2015 │ 1 │ 44865 │
│ 6 │ 2015 │ 1 │ 39409 │
2017-12-28 15:13:23 +00:00
```
2020-03-20 10:10:48 +00:00
## Download of Prepared Partitions {#download-of-prepared-partitions}
2019-01-24 16:10:05 +00:00
2022-10-04 11:36:59 +00:00
See https://github.com/toddwschneider/nyc-taxi-data and http://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html for the description of a dataset and instructions for downloading.
Downloading will result in about 227 GB of uncompressed data in CSV files. The download takes about an hour over a 1 Gbit connection (parallel downloading from s3.amazonaws.com recovers at least half of a 1 Gbit channel).
Some of the files might not download fully. Check the file sizes and re-download any that seem doubtful.
2020-03-20 10:10:48 +00:00
``` bash
2021-09-22 00:22:57 +00:00
$ curl -O https://datasets.clickhouse.com/trips_mergetree/partitions/trips_mergetree.tar
2019-09-23 15:31:46 +00:00
$ tar xvf trips_mergetree.tar -C /var/lib/clickhouse # path to ClickHouse data directory
$ # check permissions of unpacked data, fix if required
$ sudo service clickhouse-server restart
$ clickhouse-client --query "select count(*) from datasets.trips_mergetree"
2019-01-24 16:10:05 +00:00
```
2022-10-04 11:36:59 +00:00
:::info
2022-04-09 13:29:05 +00:00
If you will run the queries described below, you have to use the full table name, `datasets.trips_mergetree` .
:::
2019-01-24 16:10:05 +00:00
2020-03-20 10:10:48 +00:00
## Results on Single Server {#results-on-single-server}
2017-12-28 15:13:23 +00:00
Q1:
2020-03-20 10:10:48 +00:00
``` sql
2023-03-09 13:31:28 +00:00
SELECT cab_type, count(*) FROM trips_mergetree GROUP BY cab_type;
2017-12-28 15:13:23 +00:00
```
0.490 seconds.
Q2:
2020-03-20 10:10:48 +00:00
``` sql
2023-03-09 13:31:28 +00:00
SELECT passenger_count, avg(total_amount) FROM trips_mergetree GROUP BY passenger_count;
2017-12-28 15:13:23 +00:00
```
1.224 seconds.
Q3:
2020-03-20 10:10:48 +00:00
``` sql
2023-03-09 13:31:28 +00:00
SELECT passenger_count, toYear(pickup_date) AS year, count(*) FROM trips_mergetree GROUP BY passenger_count, year;
2017-12-28 15:13:23 +00:00
```
2.104 seconds.
Q4:
2020-03-20 10:10:48 +00:00
``` sql
2018-04-23 06:20:21 +00:00
SELECT passenger_count, toYear(pickup_date) AS year, round(trip_distance) AS distance, count(*)
FROM trips_mergetree
GROUP BY passenger_count, year, distance
2023-03-09 13:31:28 +00:00
ORDER BY year, count(*) DESC;
2017-12-28 15:13:23 +00:00
```
3.593 seconds.
The following server was used:
2021-11-07 01:25:26 +00:00
Two Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz, 16 physical cores total, 128 GiB RAM, 8x6 TB HD on hardware RAID-5
2017-12-28 15:13:23 +00:00
2020-03-19 06:53:47 +00:00
Execution time is the best of three runs. But starting from the second run, queries read data from the file system cache. No further caching occurs: the data is read out and processed in each run.
2017-12-28 15:13:23 +00:00
Creating a table on three servers:
On each server:
2020-03-20 10:10:48 +00:00
``` sql
2023-03-09 13:31:28 +00:00
CREATE TABLE default.trips_mergetree_third ( trip_id UInt32, vendor_id Enum8('1' = 1, '2' = 2, 'CMT' = 3, 'VTS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11, 'B02617' = 12, 'B02682' = 13, 'B02764' = 14), pickup_date Date, pickup_datetime DateTime, dropoff_date Date, dropoff_datetime DateTime, store_and_fwd_flag UInt8, rate_code_id UInt8, pickup_longitude Float64, pickup_latitude Float64, dropoff_longitude Float64, dropoff_latitude Float64, passenger_count UInt8, trip_distance Float64, fare_amount Float32, extra Float32, mta_tax Float32, tip_amount Float32, tolls_amount Float32, ehail_fee Float32, improvement_surcharge Float32, total_amount Float32, payment_type_ Enum8('UNK' = 0, 'CSH' = 1, 'CRE' = 2, 'NOC' = 3, 'DIS' = 4), trip_type UInt8, pickup FixedString(25), dropoff FixedString(25), cab_type Enum8('yellow' = 1, 'green' = 2, 'uber' = 3), pickup_nyct2010_gid UInt8, pickup_ctlabel Float32, pickup_borocode UInt8, pickup_boroname Enum8('' = 0, 'Manhattan' = 1, 'Bronx' = 2, 'Brooklyn' = 3, 'Queens' = 4, 'Staten Island' = 5), pickup_ct2010 FixedString(6), pickup_boroct2010 FixedString(7), pickup_cdeligibil Enum8(' ' = 0, 'E' = 1, 'I' = 2), pickup_ntacode FixedString(4), pickup_ntaname Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105,
2017-12-28 15:13:23 +00:00
```
On the source server:
2020-03-20 10:10:48 +00:00
``` sql
2023-03-09 13:31:28 +00:00
CREATE TABLE trips_mergetree_x3 AS trips_mergetree_third ENGINE = Distributed(perftest, default, trips_mergetree_third, rand());
2017-12-28 15:13:23 +00:00
```
The following query redistributes data:
2020-03-20 10:10:48 +00:00
``` sql
2023-03-09 13:31:28 +00:00
INSERT INTO trips_mergetree_x3 SELECT * FROM trips_mergetree;
2017-12-28 15:13:23 +00:00
```
This takes 2454 seconds.
On three servers:
Q1: 0.212 seconds.
Q2: 0.438 seconds.
Q3: 0.733 seconds.
Q4: 1.241 seconds.
No surprises here, since the queries are scaled linearly.
2020-03-19 06:53:47 +00:00
We also have the results from a cluster of 140 servers:
2017-12-28 15:13:23 +00:00
Q1: 0.028 sec.
Q2: 0.043 sec.
Q3: 0.051 sec.
Q4: 0.072 sec.
In this case, the query processing time is determined above all by network latency.
2022-03-11 20:39:05 +00:00
We ran queries using a client located in a different datacenter than where the cluster was located, which added about 20 ms of latency.
2017-12-28 15:13:23 +00:00
2020-03-20 10:10:48 +00:00
## Summary {#summary}
2018-09-04 11:18:59 +00:00
2020-03-20 10:10:48 +00:00
| servers | Q1 | Q2 | Q3 | Q4 |
2020-04-30 18:19:18 +00:00
|---------|-------|-------|-------|-------|
2021-11-18 08:25:57 +00:00
| 1, E5-2650v2 | 0.490 | 1.224 | 2.104 | 3.593 |
| 3, E5-2650v2 | 0.212 | 0.438 | 0.733 | 1.241 |
| 1, AWS c5n.4xlarge | 0.249 | 1.279 | 1.738 | 3.527 |
| 1, AWS c5n.9xlarge | 0.130 | 0.584 | 0.777 | 1.811 |
| 3, AWS c5n.9xlarge | 0.057 | 0.231 | 0.285 | 0.641 |
| 140, E5-2650v2 | 0.028 | 0.043 | 0.051 | 0.072 |