ClickHouse/dbms/src/Dictionaries/ComplexKeyCacheDictionary.cpp

1013 lines
39 KiB
C++
Raw Normal View History

#include <Dictionaries/ComplexKeyCacheDictionary.h>
#include <Dictionaries/DictionaryBlockInputStream.h>
#include <Common/BitHelpers.h>
#include <Common/randomSeed.h>
#include <Common/Stopwatch.h>
#include <Common/ProfilingScopedRWLock.h>
2017-04-08 01:32:05 +00:00
#include <Common/ProfileEvents.h>
#include <Common/CurrentMetrics.h>
2017-06-06 17:18:32 +00:00
#include <ext/range.h>
2017-04-08 01:32:05 +00:00
namespace ProfileEvents
{
extern const Event DictCacheKeysRequested;
extern const Event DictCacheKeysRequestedMiss;
extern const Event DictCacheKeysRequestedFound;
extern const Event DictCacheKeysExpired;
extern const Event DictCacheKeysNotFound;
extern const Event DictCacheKeysHit;
extern const Event DictCacheRequestTimeNs;
extern const Event DictCacheLockWriteNs;
extern const Event DictCacheLockReadNs;
}
namespace CurrentMetrics
{
extern const Metric DictCacheRequests;
}
namespace DB
{
namespace ErrorCodes
{
extern const int TYPE_MISMATCH;
extern const int BAD_ARGUMENTS;
extern const int UNSUPPORTED_METHOD;
}
inline UInt64 ComplexKeyCacheDictionary::getCellIdx(const StringRef key) const
{
const auto hash = StringRefHash{}(key);
const auto idx = hash & size_overlap_mask;
return idx;
}
ComplexKeyCacheDictionary::ComplexKeyCacheDictionary(const std::string & name, const DictionaryStructure & dict_struct,
DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime,
const size_t size)
: name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime),
size{roundUpToPowerOfTwoOrZero(std::max(size, size_t(max_collision_length)))},
size_overlap_mask{this->size - 1},
rnd_engine{randomSeed()}
{
if (!this->source_ptr->supportsSelectiveLoad())
throw Exception{
name + ": source cannot be used with ComplexKeyCacheDictionary",
ErrorCodes::UNSUPPORTED_METHOD};
createAttributes();
}
ComplexKeyCacheDictionary::ComplexKeyCacheDictionary(const ComplexKeyCacheDictionary & other)
: ComplexKeyCacheDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.size}
{}
#define DECLARE(TYPE)\
void ComplexKeyCacheDictionary::get##TYPE(\
2017-05-25 19:52:05 +00:00
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,\
PaddedPODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
const auto null_value = std::get<TYPE>(attribute.null_values);\
\
getItemsNumber<TYPE>(attribute, key_columns, out, [&] (const size_t) { return null_value; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void ComplexKeyCacheDictionary::getString(
2017-05-25 19:52:05 +00:00
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,
ColumnString * out) const
{
dict_struct.validateKeyTypes(key_types);
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
const auto null_value = StringRef{std::get<String>(attribute.null_values)};
getItemsString(attribute, key_columns, out, [&] (const size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void ComplexKeyCacheDictionary::get##TYPE(\
2017-05-25 19:52:05 +00:00
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,\
const PaddedPODArray<TYPE> & def, PaddedPODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, key_columns, out, [&] (const size_t row) { return def[row]; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void ComplexKeyCacheDictionary::getString(
2017-05-25 19:52:05 +00:00
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,
const ColumnString * const def, ColumnString * const out) const
{
dict_struct.validateKeyTypes(key_types);
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
getItemsString(attribute, key_columns, out, [&] (const size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE)\
void ComplexKeyCacheDictionary::get##TYPE(\
2017-05-25 19:52:05 +00:00
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,\
const TYPE def, PaddedPODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, key_columns, out, [&] (const size_t) { return def; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void ComplexKeyCacheDictionary::getString(
2017-05-25 19:52:05 +00:00
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,
const String & def, ColumnString * const out) const
{
dict_struct.validateKeyTypes(key_types);
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
getItemsString(attribute, key_columns, out, [&] (const size_t) { return StringRef{def}; });
}
/// returns cell_idx (always valid for replacing), 'cell is valid' flag, 'cell is outdated' flag,
/// true false found and valid
/// false true not found (something outdated, maybe our cell)
/// false false not found (other id stored with valid data)
/// true true impossible
///
/// todo: split this func to two: find_for_get and find_for_set
ComplexKeyCacheDictionary::FindResult ComplexKeyCacheDictionary::findCellIdx(const StringRef & key, const CellMetadata::time_point_t now, const size_t hash) const
{
auto pos = hash;
auto oldest_id = pos;
auto oldest_time = CellMetadata::time_point_t::max();
const auto stop = pos + max_collision_length;
for (; pos < stop; ++pos)
{
const auto cell_idx = pos & size_overlap_mask;
const auto & cell = cells[cell_idx];
if (cell.hash != hash || cell.key != key)
{
/// maybe we already found nearest expired cell
if (oldest_time > now && oldest_time > cell.expiresAt())
{
oldest_time = cell.expiresAt();
oldest_id = cell_idx;
}
continue;
}
if (cell.expiresAt() < now)
{
return {cell_idx, false, true};
}
return {cell_idx, true, false};
}
oldest_id &= size_overlap_mask;
return {oldest_id, false, false};
}
2017-05-25 19:52:05 +00:00
void ComplexKeyCacheDictionary::has(const Columns & key_columns, const DataTypes & key_types, PaddedPODArray<UInt8> & out) const
{
dict_struct.validateKeyTypes(key_types);
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
const auto rows_num = key_columns.front()->size();
const auto keys_size = dict_struct.key.value().size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
PODArray<StringRef> keys_array(rows_num);
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
const auto & cell_idx = find_result.cell_idx;
/** cell should be updated if either:
* 1. keys (or hash) do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell = cells[cell_idx];
out[row] = !cell.isDefault();
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
if (outdated_keys.empty())
return;
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows),
[] (auto & pair) { return pair.second.front(); });
/// request new values
update(key_columns, keys_array, required_rows,
[&] (const StringRef key, const auto)
{
for (const auto out_idx : outdated_keys[key])
out[out_idx] = true;
},
[&] (const StringRef key, const auto)
{
for (const auto out_idx : outdated_keys[key])
out[out_idx] = false;
});
}
void ComplexKeyCacheDictionary::createAttributes()
{
const auto attributes_size = dict_struct.attributes.size();
attributes.reserve(attributes_size);
bytes_allocated += size * sizeof(CellMetadata);
bytes_allocated += attributes_size * sizeof(attributes.front());
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
throw Exception{
name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(),
ErrorCodes::TYPE_MISMATCH};
}
}
2016-08-07 09:09:18 +00:00
ComplexKeyCacheDictionary::Attribute ComplexKeyCacheDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
Attribute attr{type};
switch (type)
{
case AttributeUnderlyingType::UInt8:
std::get<UInt8>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt8>>(attr.arrays) = std::make_unique<ContainerType<UInt8>>(size);
bytes_allocated += size * sizeof(UInt8);
break;
case AttributeUnderlyingType::UInt16:
std::get<UInt16>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt16>>(attr.arrays) = std::make_unique<ContainerType<UInt16>>(size);
bytes_allocated += size * sizeof(UInt16);
break;
case AttributeUnderlyingType::UInt32:
std::get<UInt32>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt32>>(attr.arrays) = std::make_unique<ContainerType<UInt32>>(size);
bytes_allocated += size * sizeof(UInt32);
break;
case AttributeUnderlyingType::UInt64:
std::get<UInt64>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt64>>(attr.arrays) = std::make_unique<ContainerType<UInt64>>(size);
bytes_allocated += size * sizeof(UInt64);
break;
case AttributeUnderlyingType::Int8:
std::get<Int8>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int8>>(attr.arrays) = std::make_unique<ContainerType<Int8>>(size);
bytes_allocated += size * sizeof(Int8);
break;
case AttributeUnderlyingType::Int16:
std::get<Int16>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int16>>(attr.arrays) = std::make_unique<ContainerType<Int16>>(size);
bytes_allocated += size * sizeof(Int16);
break;
case AttributeUnderlyingType::Int32:
std::get<Int32>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int32>>(attr.arrays) = std::make_unique<ContainerType<Int32>>(size);
bytes_allocated += size * sizeof(Int32);
break;
case AttributeUnderlyingType::Int64:
std::get<Int64>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int64>>(attr.arrays) = std::make_unique<ContainerType<Int64>>(size);
bytes_allocated += size * sizeof(Int64);
break;
case AttributeUnderlyingType::Float32:
std::get<Float32>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float32>>(attr.arrays) = std::make_unique<ContainerType<Float32>>(size);
bytes_allocated += size * sizeof(Float32);
break;
case AttributeUnderlyingType::Float64:
std::get<Float64>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float64>>(attr.arrays) = std::make_unique<ContainerType<Float64>>(size);
bytes_allocated += size * sizeof(Float64);
break;
case AttributeUnderlyingType::String:
std::get<String>(attr.null_values) = null_value.get<String>();
std::get<ContainerPtrType<StringRef>>(attr.arrays) = std::make_unique<ContainerType<StringRef>>(size);
bytes_allocated += size * sizeof(StringRef);
if (!string_arena)
string_arena = std::make_unique<ArenaWithFreeLists>();
break;
}
return attr;
}
template <typename OutputType, typename DefaultGetter>
void ComplexKeyCacheDictionary::getItemsNumber(
Attribute & attribute,
2017-05-25 19:52:05 +00:00
const Columns & key_columns,
PaddedPODArray<OutputType> & out,
DefaultGetter && get_default) const
{
if (false) {}
#define DISPATCH(TYPE) \
else if (attribute.type == AttributeUnderlyingType::TYPE) \
getItemsNumberImpl<TYPE, OutputType>(attribute, key_columns, out, std::forward<DefaultGetter>(get_default));
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
else
throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR);
}
template <typename AttributeType, typename OutputType, typename DefaultGetter>
void ComplexKeyCacheDictionary::getItemsNumberImpl(
Attribute & attribute,
2017-05-25 19:52:05 +00:00
const Columns & key_columns,
PaddedPODArray<OutputType> & out,
DefaultGetter && get_default) const
{
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
auto & attribute_array = std::get<ContainerPtrType<AttributeType>>(attribute.arrays);
const auto rows_num = key_columns.front()->size();
const auto keys_size = dict_struct.key.value().size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
PODArray<StringRef> keys_array(rows_num);
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
/** cell should be updated if either:
* 1. keys (or hash) do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
out[row] = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
if (outdated_keys.empty())
return;
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows),
[] (auto & pair) { return pair.second.front(); });
/// request new values
update(key_columns, keys_array, required_rows,
[&] (const StringRef key, const size_t cell_idx)
{
for (const auto row : outdated_keys[key])
out[row] = attribute_array[cell_idx];
},
[&] (const StringRef key, const size_t cell_idx)
{
for (const auto row : outdated_keys[key])
out[row] = get_default(row);
});
}
2016-08-07 08:12:58 +00:00
template <typename DefaultGetter>
void ComplexKeyCacheDictionary::getItemsString(
2017-05-25 19:52:05 +00:00
Attribute & attribute, const Columns & key_columns, ColumnString * out,
DefaultGetter && get_default) const
{
const auto rows_num = key_columns.front()->size();
/// save on some allocations
out->getOffsets().reserve(rows_num);
const auto keys_size = dict_struct.key.value().size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
auto & attribute_array = std::get<ContainerPtrType<StringRef>>(attribute.arrays);
auto found_outdated_values = false;
/// perform optimistic version, fallback to pessimistic if failed
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, discard on fail
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
SCOPE_EXIT(temporary_keys_pool.rollback(key.size));
const auto find_result = findCellIdx(key, now);
if (!find_result.valid)
{
found_outdated_values = true;
break;
}
else
{
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
out->insertData(string_ref.data, string_ref.size);
}
}
}
/// optimistic code completed successfully
if (!found_outdated_values)
{
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num, std::memory_order_release);
return;
}
/// now onto the pessimistic one, discard possible partial results from the optimistic path
out->getChars().resize_assume_reserved(0);
out->getOffsets().resize_assume_reserved(0);
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
/// we are going to store every string separately
MapType<StringRef> map;
PODArray<StringRef> keys_array(rows_num);
size_t total_length = 0;
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
if (!cell.isDefault())
map[key] = copyIntoArena(string_ref, temporary_keys_pool);
total_length += string_ref.size + 1;
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
/// request new values
if (!outdated_keys.empty())
{
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows),
[] (auto & pair) { return pair.second.front(); });
update(key_columns, keys_array, required_rows,
[&] (const StringRef key, const size_t cell_idx)
{
const StringRef attribute_value = attribute_array[cell_idx];
/// We must copy key and value to own memory, because it may be replaced with another
/// in next iterations of inner loop of update.
const StringRef copied_key = copyIntoArena(key, temporary_keys_pool);
const StringRef copied_value = copyIntoArena(attribute_value, temporary_keys_pool);
map[copied_key] = copied_value;
total_length += (attribute_value.size + 1) * outdated_keys[key].size();
},
[&] (const StringRef key, const size_t cell_idx)
{
for (const auto row : outdated_keys[key])
total_length += get_default(row).size + 1;
});
}
out->getChars().reserve(total_length);
for (const auto row : ext::range(0, ext::size(keys_array)))
{
const StringRef key = keys_array[row];
const auto it = map.find(key);
const auto string_ref = it != std::end(map) ? it->second : get_default(row);
out->insertData(string_ref.data, string_ref.size);
}
}
template <typename PresentKeyHandler, typename AbsentKeyHandler>
void ComplexKeyCacheDictionary::update(
2017-05-25 19:52:05 +00:00
const Columns & in_key_columns, const PODArray<StringRef> & in_keys,
2017-05-25 20:09:48 +00:00
const std::vector<size_t> & in_requested_rows,
PresentKeyHandler && on_cell_updated,
AbsentKeyHandler && on_key_not_found) const
{
MapType<bool> remaining_keys{in_requested_rows.size()};
for (const auto row : in_requested_rows)
remaining_keys.insert({ in_keys[row], false });
2017-05-25 20:09:48 +00:00
std::uniform_int_distribution<UInt64> distribution(dict_lifetime.min_sec, dict_lifetime.max_sec);
const ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs};
{
Stopwatch watch;
auto stream = source_ptr->loadKeys(in_key_columns, in_requested_rows);
stream->readPrefix();
const auto keys_size = dict_struct.key.value().size();
StringRefs keys(keys_size);
const auto attributes_size = attributes.size();
const auto now = std::chrono::system_clock::now();
while (const auto block = stream->read())
{
/// cache column pointers
2017-05-25 19:52:05 +00:00
const auto key_columns = ext::map<Columns>(
ext::range(0, keys_size),
[&] (const size_t attribute_idx)
{
2017-05-25 20:09:48 +00:00
return block.safeGetByPosition(attribute_idx).column;
});
2017-05-25 19:52:05 +00:00
const auto attribute_columns = ext::map<Columns>(
ext::range(0, attributes_size),
[&] (const size_t attribute_idx)
{
2017-05-25 20:09:48 +00:00
return block.safeGetByPosition(keys_size + attribute_idx).column;
});
const auto rows_num = block.rows();
for (const auto row : ext::range(0, rows_num))
{
auto key = allocKey(row, key_columns, keys);
const auto hash = StringRefHash{}(key);
const auto find_result = findCellIdx(key, now, hash);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
for (const auto attribute_idx : ext::range(0, attributes.size()))
{
const auto & attribute_column = *attribute_columns[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, cell_idx, attribute_column[row]);
}
/// if cell id is zero and zero does not map to this cell, then the cell is unused
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
/// handle memory allocated for old key
if (key == cell.key)
{
freeKey(key);
key = cell.key;
}
else
{
/// new key is different from the old one
if (cell.key.data)
freeKey(cell.key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
/// inform caller
on_cell_updated(key, cell_idx);
/// mark corresponding id as found
remaining_keys[key] = true;
}
}
stream->readSuffix();
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequested, in_requested_rows.size());
ProfileEvents::increment(ProfileEvents::DictCacheRequestTimeNs, watch.elapsed());
}
size_t found_num = 0;
size_t not_found_num = 0;
const auto now = std::chrono::system_clock::now();
/// Check which ids have not been found and require setting null_value
for (const auto key_found_pair : remaining_keys)
{
if (key_found_pair.second)
{
++found_num;
continue;
}
++not_found_num;
auto key = key_found_pair.first;
const auto hash = StringRefHash{}(key);
const auto find_result = findCellIdx(key, now, hash);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
/// Set null_value for each attribute
for (auto & attribute : attributes)
setDefaultAttributeValue(attribute, cell_idx);
/// Check if cell had not been occupied before and increment element counter if it hadn't
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
if (key == cell.key)
key = cell.key;
else
{
if (cell.key.data)
freeKey(cell.key);
/// copy key from temporary pool
key = copyKey(key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
cell.setDefault();
/// inform caller that the cell has not been found
on_key_not_found(key, cell_idx);
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, found_num);
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, not_found_num);
}
2016-08-07 09:09:18 +00:00
void ComplexKeyCacheDictionary::setDefaultAttributeValue(Attribute & attribute, const size_t idx) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = std::get<UInt8>(attribute.null_values); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = std::get<UInt16>(attribute.null_values); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = std::get<UInt32>(attribute.null_values); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = std::get<UInt64>(attribute.null_values); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = std::get<Int8>(attribute.null_values); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = std::get<Int16>(attribute.null_values); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = std::get<Int32>(attribute.null_values); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = std::get<Int64>(attribute.null_values); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = std::get<Float32>(attribute.null_values); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = std::get<Float64>(attribute.null_values); break;
case AttributeUnderlyingType::String:
{
const auto & null_value_ref = std::get<String>(attribute.null_values);
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
if (string_ref.data != null_value_ref.data())
{
if (string_ref.data)
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
string_ref = StringRef{null_value_ref};
}
break;
}
}
}
2016-08-07 09:09:18 +00:00
void ComplexKeyCacheDictionary::setAttributeValue(Attribute & attribute, const size_t idx, const Field & value) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::String:
{
const auto & string = value.get<String>();
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
const auto & null_value_ref = std::get<String>(attribute.null_values);
/// free memory unless it points to a null_value
if (string_ref.data && string_ref.data != null_value_ref.data())
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
const auto size = string.size();
if (size != 0)
{
auto string_ptr = string_arena->alloc(size + 1);
std::copy(string.data(), string.data() + size + 1, string_ptr);
string_ref = StringRef{string_ptr, size};
}
else
string_ref = {};
break;
}
}
}
2016-08-07 09:09:18 +00:00
ComplexKeyCacheDictionary::Attribute & ComplexKeyCacheDictionary::getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{
name + ": no such attribute '" + attribute_name + "'",
ErrorCodes::BAD_ARGUMENTS};
return attributes[it->second];
}
2017-05-25 19:52:05 +00:00
StringRef ComplexKeyCacheDictionary::allocKey(const size_t row, const Columns & key_columns, StringRefs & keys) const
{
if (key_size_is_fixed)
return placeKeysInFixedSizePool(row, key_columns);
return placeKeysInPool(row, key_columns, keys, *dict_struct.key, *keys_pool);
}
void ComplexKeyCacheDictionary::freeKey(const StringRef key) const
{
if (key_size_is_fixed)
fixed_size_keys_pool->free(const_cast<char *>(key.data));
else
keys_pool->free(const_cast<char *>(key.data), key.size);
}
template <typename Pool>
StringRef ComplexKeyCacheDictionary::placeKeysInPool(
const size_t row, const Columns & key_columns, StringRefs & keys,
const std::vector<DictionaryAttribute> & key_attributes, Pool & pool)
{
const auto keys_size = key_columns.size();
size_t sum_keys_size{};
for (size_t j = 0; j < keys_size; ++j)
{
keys[j] = key_columns[j]->getDataAt(row);
sum_keys_size += keys[j].size;
if (key_attributes[j].underlying_type == AttributeUnderlyingType::String)
sum_keys_size += sizeof(size_t) + 1;
}
auto place = pool.alloc(sum_keys_size);
auto key_start = place;
for (size_t j = 0; j < keys_size; ++j)
{
if (key_attributes[j].underlying_type == AttributeUnderlyingType::String)
{
auto start = key_start;
auto key_size = keys[j].size + 1;
memcpy(key_start, &key_size, sizeof(size_t));
key_start += sizeof(size_t);
memcpy(key_start, keys[j].data, keys[j].size);
key_start += keys[j].size;
*key_start = '\0';
++key_start;
keys[j].data = start;
keys[j].size += sizeof(size_t) + 1;
}
else
{
memcpy(key_start, keys[j].data, keys[j].size);
keys[j].data = key_start;
key_start += keys[j].size;
}
}
return { place, sum_keys_size };
}
StringRef ComplexKeyCacheDictionary::placeKeysInFixedSizePool(
2017-05-25 19:52:05 +00:00
const size_t row, const Columns & key_columns) const
{
const auto res = fixed_size_keys_pool->alloc();
auto place = res;
for (const auto & key_column : key_columns)
{
const StringRef key = key_column->getDataAt(row);
memcpy(place, key.data, key.size);
place += key.size;
}
return { res, key_size };
}
2016-08-07 08:12:58 +00:00
StringRef ComplexKeyCacheDictionary::copyIntoArena(StringRef src, Arena & arena)
{
char * allocated = arena.alloc(src.size);
memcpy(allocated, src.data, src.size);
return { allocated, src.size };
2016-08-07 08:12:58 +00:00
}
StringRef ComplexKeyCacheDictionary::copyKey(const StringRef key) const
{
const auto res = key_size_is_fixed ? fixed_size_keys_pool->alloc() : keys_pool->alloc(key.size);
memcpy(res, key.data, key.size);
return { res, key.size };
}
bool ComplexKeyCacheDictionary::isEmptyCell(const UInt64 idx) const
{
return (cells[idx].key == StringRef{} && (idx != zero_cell_idx
|| cells[idx].data == ext::safe_bit_cast<CellMetadata::time_point_urep_t>(CellMetadata::time_point_t())));
}
BlockInputStreamPtr ComplexKeyCacheDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const
{
std::vector<StringRef> keys;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
for (auto idx : ext::range(0, cells.size()))
if (!isEmptyCell(idx)
&& !cells[idx].isDefault())
keys.push_back(cells[idx].key);
}
using BlockInputStreamType = DictionaryBlockInputStream<ComplexKeyCacheDictionary, UInt64>;
return std::make_shared<BlockInputStreamType>(shared_from_this(), max_block_size, keys, column_names);
}
}