Если в запросе отсутствуют секции `DISTINCT`, `GROUP BY`, `ORDER BY`, подзапросы в `IN` и `JOIN`, то запрос будет обработан полностью потоково, с использованием O(1) количества оперативки.
Иначе запрос может съесть много оперативки, если не указаны подходящие ограничения `max_memory_usage`, `max_rows_to_group_by`, `max_rows_to_sort`, `max_rows_in_distinct`, `max_bytes_in_distinct`, `max_rows_in_set`, `max_bytes_in_set`, `max_rows_in_join`, `max_bytes_in_join`, `max_bytes_before_external_sort`, `max_bytes_before_external_group_by`. Подробнее смотрите в разделе "Настройки". Присутствует возможность использовать внешнюю сортировку (с сохранением временных данных на диск) и внешнюю агрегацию. `Merge join` в системе нет.
Таблица system.one содержит ровно одну строку (то есть, эта таблица выполняет такую же роль, как таблица DUAL, которую можно найти в других СУБД).
В секции FROM указывается таблица, из которой будут читаться данные, либо подзапрос, либо табличная функция; дополнительно могут присутствовать ARRAY JOIN и обычный JOIN (смотрите ниже).
Вместо таблицы, может быть указан подзапрос SELECT в скобках.
В этом случае, конвейер обработки подзапроса будет встроен в конвейер обработки внешнего запроса.
В отличие от стандартного SQL, после подзапроса не нужно указывать его синоним. Для совместимости, присутствует возможность написать AS name после подзапроса, но указанное имя нигде не используется.
Вместо таблицы, может быть указана табличная функция. Подробнее смотрите раздел "Табличные функции".
Для выполнения запроса, из соответствующей таблицы, вынимаются все столбцы, перечисленные в запросе. Из подзапросов выкидываются столбцы, не нужные для внешнего запроса.
Если в запросе не перечислено ни одного столбца (например, SELECT count() FROM t), то из таблицы всё равно вынимается один какой-нибудь столбец (предпочитается самый маленький), для того, чтобы можно было хотя бы посчитать количество строк.
Модификатор FINAL может быть использован только при SELECT-е из таблицы типа CollapsingMergeTree. При указании FINAL, данные будут выбираться полностью "сколлапсированными". Стоит учитывать, что использование FINAL приводит к выбору кроме указанных в SELECT-е столбцов также столбцов, относящихся к первичному ключу. Также, запрос будет выполняться в один поток, и при выполнении запроса будет выполняться слияние данных. Это приводит к тому, что при использовании FINAL, запрос выполняется медленнее. В большинстве случаев, следует избегать использования FINAL. Подробнее смотрите раздел "Движок CollapsingMergeTree".
Секция SAMPLE позволяет выполнить запрос приближённо. Приближённое выполнение запроса поддерживается только таблицами типа MergeTree\* и только если при создании таблицы было указано выражение, по которому производится выборка (смотрите раздел "Движок MergeTree").
В первом случае, запрос будет выполнен по k-доле данных. Например, если указано `SAMPLE 0.1`, то запрос будет выполнен по 10% данных.
Во втором случае, запрос будет выполнен по выборке из не более n строк. Например, если указано `SAMPLE 10000000`, то запрос будет выполнен по не более чем 10 000 000 строкам.
В этом примере, запрос выполняется по выборке из 0.1 (10%) данных. Значения агрегатных функций не корректируются автоматически, поэтому для получения приближённого результата, значение count() вручную домножается на 10.
При использовании варианта вида `SAMPLE 10000000`, нет информации, какая относительная доля данных была обработана, и на что следует домножить агрегатные функции, поэтому такой способ записи подходит не для всех случаев.
Выборка с указанием относительного коэффициента является "согласованной": если рассмотреть все возможные данные, которые могли бы быть в таблице, то выборка (при использовании одного выражения сэмплирования, указанного при создании таблицы), с одинаковым коэффициентом, выбирает всегда одно и то же подмножество этих всевозможных данных. То есть, выборка из разных таблиц, на разных серверах, в разное время, делается одинаковым образом.
Например, выборка по идентификаторам посетителей, выберет из разных таблиц строки с одинаковым подмножеством всех возможных идентификаторов посетителей. Это позволяет использовать выборку в подзапросах в секции IN, а также при ручном сопоставлении результатов разных запросов с выборками.
Для массива в секции ARRAY JOIN может быть указан алиас. В этом случае, элемент массива будет доступен под этим алиасом, а сам массив - под исходным именем. Пример:
В секции ARRAY JOIN может быть указано несколько массивов одинаковых размеров через запятую. В этом случае, JOIN делается с ними одновременно (прямая сумма, а не прямое произведение). Пример:
При указании имени вложенной структуры данных в ARRAY JOIN, смысл такой же, как ARRAY JOIN со всеми элементами-массивами, из которых она состоит. Пример:
В запросе может быть указано не более одной секции ARRAY JOIN.
Соответствующее преобразование может выполняться как до секции WHERE/PREWHERE (если его результат нужен в этой секции), так и после выполнения WHERE/PREWHERE (чтобы уменьшить объём вычислений).
Выполняет соединение с данными из подзапроса. В начале выполнения запроса, выполняется подзапрос, указанный после JOIN, и его результат сохраняется в память. Затем производится чтение из "левой" таблицы, указанной в секции FROM, и во время этого чтения, для каждой прочитанной строчки из "левой" таблицы, из таблицы-результата подзапроса ("правой" таблицы) выбираются строчки, соответствующие условию на совпадение значений столбцов, указанных в USING.
Вместо подзапроса может быть указано имя таблицы. Это эквивалентно подзапросу `SELECT * FROM table`, кроме особого случая, когда таблица имеет движок Join - подготовленное множество для соединения.
Если указано INNER, то в результат попадают только строки, для которых найдена соответствующая строка в "правой" таблице.
Если указано LEFT, то для строчек "левой" таблицы, для которых нет соответствующих в "правой" таблице, будут присоединены значения "по умолчанию" - нули, пустые строки. Вместо LEFT может быть написано LEFT OUTER - слово OUTER ни на что не влияет.
Использование ALL соответствует обычной семантике JOIN-а из стандартного SQL.
Использование ANY является более оптимальным. Если известно, что в "правой" таблице есть не более одной подходящей строки, то результаты ANY и ALL совпадают. Обязательно необходимо указать ANY или ALL (ни один из этих вариантов не выбран по умолчанию).
При использовании обычного JOIN-а, запрос отправляется на удалённые серверы, и на каждом из них выполняются подзапросы для формирования "правой" таблицы, и с этой таблицей выполняется соединение. То есть, "правая" таблица формируется на каждом сервере отдельно.
При использовании `GLOBAL ... JOIN-а`, сначала, на сервере-инициаторе запроса, выполняется подзапрос для вычисления "правой" таблицы, и затем эта временная таблица передаётся на каждый удалённый сервер, и на них выполняются запросы, с использованием этих переданных временных данных.
При выполнении JOIN-а отсутствует оптимизация порядка выполнения по отношению к другим стадиям запроса: соединение (поиск в "правой" таблице) выполняется до фильтрации в WHERE, до агрегации. Поэтому, чтобы явно задать порядок вычислений, рекомендуется выполнять JOIN подзапроса с подзапросом.
У подзапросов нет возможности задать имена и нет возможности их использовать для того, чтобы сослаться на столбец из конкретного подзапроса.
Требуется, чтобы столбцы, указанные в USING, назывались одинаково в обоих подзапросах, а остальные столбцы - по-разному. Изменить имена столбцов в подзапросах можно с помощью алиасов (в примере используются алиасы hits и visits).
В секции USING указывается один или несколько столбцов для соединения, что обозначает условие на равенство этих столбцов. Список столбцов задаётся без скобок. Более сложные условия соединения не поддерживаются.
"Правая" таблица (результат подзапроса) располагается в оперативке. Если оперативки не хватает, вы не сможете выполнить JOIN.
В запросе (на одном уровне) можно указать только один JOIN. Чтобы выполнить несколько JOIN-ов, вы можете разместить их в подзапросах.
Каждый раз для выполнения запроса с одинаковым JOIN-ом, подзапрос выполняется заново - результат не кэшируется. Это можно избежать, используя специальный движок таблиц Join, представляющий собой подготовленное множество для соединения, которое всегда находится в оперативке. Подробнее смотрите в разделе "Движки таблиц, Join".
В некоторых случаях, вместо использования JOIN достаточно использовать IN - это более эффективно.
Среди разных типов JOIN-ов, наиболее эффективен ANY LEFT JOIN, затем ANY INNER JOIN; наименее эффективны ALL LEFT JOIN и ALL INNER JOIN.
Если JOIN необходим для соединения с таблицами измерений (dimension tables - сравнительно небольшие таблицы, которые содержат свойства измерений - например, имена для рекламных кампаний), то использование JOIN может быть не очень удобным из-за громоздкости синтаксиса, а также из-за того, что правая таблица читается заново при каждом запросе. Специально для таких случаев существует функциональность "Внешние словари", которую следует использовать вместо JOIN. Подробнее смотрите раздел "Внешние словари".
На поведение JOIN влияет настройка [join_use_nulls](../operations/settings/settings.md#settings-join_use_nulls). При `join_use_nulls=1``JOIN` работает как в стандартном SQL.
Если ключами JOIN выступают поля типа [Nullable](../data_types/nullable.md#data_types-nullable), то строки, где хотя бы один из ключей имеет значение [NULL](syntax.md#null-literal), не соединяются.
Позволяет задать выражение, которое ClickHouse использует для фильтрации данных перед всеми другими действиями в запросе кроме выражений, содержащихся в секции [PREWHERE](#query_language-queries-prewhere). Обычно, это выражение с логическими операторами.
Если в секции необходимо проверить [NULL](syntax.md#null-literal), то используйте операторы [IS NULL](operators.md#operator-is-null) и [IS NOT NULL](operators.md#operator-is-not-null), а также соответствующие функции `isNull` и `isNotNull`. В противном случае выражение будет считаться всегда не выполненным.
Имеет такой же смысл, как и секция [WHERE](#query_language-queries-where). Отличие состоит в том, какие данные читаются из таблицы.
При использовании `PREWHERE`, из таблицы сначала читаются только столбцы, необходимые для выполнения `PREWHERE`. Затем читаются остальные столбцы, нужные для выполнения запроса, но из них только те блоки, в которых выражение в `PREWHERE` истинное.
`PREWHERE` имеет смысл использовать, если есть условия фильтрации, не подходящие под индексы, которые использует меньшинство столбцов из тех, что есть в запросе, но достаточно сильно фильтрует данные. Таким образом, сокращается количество читаемых данных.
Следует иметь ввиду, что указывать в `PREWHERE` только столбцы, по которым существует индекс, имеет мало смысла, так как при использовании индекса и так читаются лишь блоки данных, соответствующие индексу.
Если настройка `optimize_move_to_prewhere` выставлена в `1`, то при отсутствии `PREWHERE`, система будет автоматически переносить части выражений из `WHERE` в `PREWHERE` согласно некоторой эвристике.
Секция GROUP BY, если есть, должна содержать список выражений. Каждое выражение далее будем называть "ключом".
При этом, все выражения в секциях SELECT, HAVING, ORDER BY, должны вычисляться из ключей или из агрегатных функций. То есть, каждый выбираемый из таблицы столбец, должен использоваться либо в ключах, либо внутри агрегатных функций.
Если запрос содержит столбцы таблицы только внутри агрегатных функций, то секция GROUP BY может не указываться, и подразумевается агрегация по пустому набору ключей.
Но, в отличие от стандартного SQL, если в таблице нет строк (вообще нет или после фильтрации с помощью WHERE), в качестве результата возвращается пустой результат, а не результат из одной строки, содержащий "начальные" значения агрегатных функций.
В отличие от MySQL (и в соответствии со стандартом SQL), вы не можете получить какое-нибудь значение некоторого столбца, не входящего в ключ или агрегатную функцию (за исключением константных выражений). Для обхода этого вы можете воспользоваться агрегатной функцией any (получить первое попавшееся значение) или min/max.
Не поддерживается указание констант в качестве аргументов агрегатных функций. Пример: sum(1). Вместо этого, вы можете избавиться от констант. Пример: `count()`.
Если указан модификатор WITH TOTALS, то будет посчитана ещё одна строчка, в которой в столбцах-ключах будут содержаться значения по умолчанию (нули, пустые строки), а в столбцах агрегатных функций - значения, посчитанные по всем строкам ("тотальные" значения).
Эта дополнительная строчка выводится в форматах JSON\*, TabSeparated\*, Pretty\* отдельно от остальных строчек. В остальных форматах эта строчка не выводится.
В форматах JSON\* строчка выводится отдельным полем totals. В форматах TabSeparated\* строчка выводится после основного результата, и перед ней (после остальных данных) вставляется пустая строка. В форматах Pretty\* строчка выводится отдельной табличкой после основного результата.
`WITH TOTALS` может выполняться по-разному при наличии HAVING. Поведение зависит от настройки totals_mode.
По умолчанию `totals_mode = 'before_having'`. В этом случае totals считается по всем строчкам, включая непрошедших через HAVING и max_rows_to_group_by.
Остальные варианты учитывают в totals только строчки, прошедшие через HAVING, и имеют разное поведение при наличии настройки `max_rows_to_group_by` и `group_by_overflow_mode = 'any'`.
`after_having_exclusive` - не учитывать строчки, не прошедшие `max_rows_to_group_by`. То есть в totals попадёт меньше или столько же строчек, чем если бы `max_rows_to_group_by` не было.
`after_having_inclusive` - учитывать в totals все строчки, не прошедшие max_rows_to_group_by. То есть в totals попадёт больше или столько же строчек, чем если бы `max_rows_to_group_by` не было.
`after_having_auto` - считать долю строчек, прошедших через HAVING. Если она больше некоторого значения (по умолчанию - 50%), то включить все строчки, не прошедшие max_rows_to_group_by в totals, иначе - не включить.
Если `max_rows_to_group_by` и `group_by_overflow_mode = 'any'` не используются, то все варианты вида `after_having` не отличаются, и вы можете использовать любой из них, например, `after_having_auto`.
Настройка `max_bytes_before_external_group_by` - потребление оперативки, при котором временные данные GROUP BY сбрасываются в файловую систему. Если равно 0 (по умолчанию) - значит выключено.
При использовании `max_bytes_before_external_group_by` рекомендуется выставить max_memory_usage примерно в два раза больше. Это следует сделать, потому что агрегация выполняется в две стадии: чтение и формирование промежуточных данных (1) и слияние промежуточных данных (2). Сброс данных на файловую систему может производиться только на стадии 1. Если сброса временных данных не было, то на стадии 2 может потребляться до такого же объёма памяти, как на стадии 1.
Например, если у вас `max_memory_usage` было выставлено в 10000000000, и вы хотите использовать внешнюю агрегацию, то имеет смысл выставить `max_bytes_before_external_group_by` в 10000000000, а max_memory_usage в 20000000000. При срабатывании внешней агрегации (если был хотя бы один сброс временных данных в файловую систему) максимальное потребление оперативки будет лишь чуть-чуть больше `max_bytes_before_external_group_by`.
При распределённой обработке запроса внешняя агрегация производится на удалённых серверах. Для того чтобы на сервере-инициаторе запроса использовалось немного оперативки, нужно выставить настройку `distributed_aggregation_memory_efficient` в 1.
При слиянии данных, сброшенных на диск, а также при слиянии результатов с удалённых серверов, при включенной настройке `distributed_aggregation_memory_efficient`, потребляется до 1/256 \* количество потоков от общего объёма оперативки.
При включенной внешней агрегации, если данных было меньше `max_bytes_before_external_group_by` (то есть сброса данных не было), то запрос работает так же быстро, как без внешней агрегации. Если же какие-то временные данные были сброшены, то время выполнения будет в несколько раз больше (примерно в три раза).
`LIMIT N BY COLUMNS` выбирает топ `N` строк для каждой группы `COLUMNS`. `LIMIT N BY` не связан с`LIMIT` и они могут использоваться в одном запросе. Ключ для `LIMIT N BY` может содержать произвольное число колонок или выражений.
`LIMIT n BY` работает с [NULL](syntax.md#null-literal) как если бы это было конкретное значение. Т.е. в результате запроса пользователь получит все комбинации полей, указанных в `BY`.
Секция ORDER BY содержит список выражений, к каждому из которых также может быть приписано DESC или ASC (направление сортировки). Если ничего не приписано - это аналогично приписыванию ASC. ASC - сортировка по возрастанию, DESC - сортировка по убыванию. Обозначение направления сортировки действует на одно выражение, а не на весь список. Пример: `ORDER BY Visits DESC, SearchPhrase`
Для сортировки по значениям типа String есть возможность указать collation (сравнение). Пример: `ORDER BY SearchPhrase COLLATE 'tr'` - для сортировки по поисковой фразе, по возрастанию, с учётом турецкого алфавита, регистронезависимо, при допущении, что строки в кодировке UTF-8. COLLATE может быть указан или не указан для каждого выражения в ORDER BY независимо. Если есть ASC или DESC, то COLLATE указывается после них. При использовании COLLATE сортировка всегда регистронезависима.
Рекомендуется использовать COLLATE только для окончательной сортировки небольшого количества строк, так как производительность сортировки с указанием COLLATE меньше, чем обычной сортировки по байтам.
Строки, для которых список выражений, по которым производится сортировка, принимает одинаковые значения, выводятся в произвольном порядке, который может быть также недетерминированным (каждый раз разным).
Если секция ORDER BY отсутствует, то, аналогично, порядок, в котором идут строки, не определён, и может быть недетерминированным.
Если кроме ORDER BY указан также не слишком большой LIMIT, то расходуется меньше оперативки. Иначе расходуется количество памяти, пропорциональное количеству данных для сортировки. При распределённой обработке запроса, если отсутствует GROUP BY, сортировка частично делается на удалённых серверах, а на сервере-инициаторе запроса производится слияние результатов. Таким образом, при распределённой сортировке, может сортироваться объём данных, превышающий размер памяти на одном сервере.
Существует возможность выполнять сортировку во внешней памяти (с созданием временных файлов на диске), если оперативной памяти не хватает. Для этого предназначена настройка `max_bytes_before_external_sort`. Если она выставлена в 0 (по умолчанию), то внешняя сортировка выключена. Если она включена, то при достижении объёмом данных для сортировки указанного количества байт, накопленные данные будут отсортированы и сброшены во временный файл. После того, как все данные будут прочитаны, будет произведено слияние всех сортированных файлов и выдача результата. Файлы записываются в директорию /var/lib/clickhouse/tmp/ (по умолчанию, может быть изменено с помощью параметра tmp_path) в конфиге.
На выполнение запроса может расходоваться больше памяти, чем max_bytes_before_external_sort. Поэтому, значение этой настройки должно быть существенно меньше, чем max_memory_usage. Для примера, если на вашем сервере 128 GB оперативки, и вам нужно выполнить один запрос, то выставите max_memory_usage в 100 GB, а max_bytes_before_external_sort в 80 GB.
Внешняя сортировка работает существенно менее эффективно, чем сортировка в оперативке.
Если указано `DISTINCT`, то из всех множеств полностью совпадающих строк результата, будет оставляться только одна строка.
Результат выполнения будет таким же, как если указано `GROUP BY` по всем указанным полям в `SELECT` и не указаны агрегатные функции. Но имеется несколько отличий от `GROUP BY`:
-`DISTINCT` может применяться совместно с`GROUP BY`;
- при отсутствии `ORDER BY` и наличии `LIMIT`, запрос прекратит выполнение сразу после того, как будет прочитано необходимое количество различных строк - в этом случае использование DISTINCT существенно более оптимально;
`DISTINCT` не поддерживается, если в `SELECT` присутствует хотя бы один столбец типа массив.
`DISTINCT` работает с [NULL](syntax.md#null-literal) как если бы `NULL` был конкретным значением, причём `NULL=NULL`. Т.е. в результате `DISTINCT` разные комбинации с`NULL` встретятся только по одному разу.
`DISTINCT` работает с [NULL](syntax.md#null-literal) как если бы `NULL` был конкретным значением, причём `NULL=NULL`. Т.е. в результате `DISTINCT` разные комбинации с`NULL` встретятся только по одному разу.
Поддерживается только `UNION ALL`. Обычный `UNION` (`UNION DISTINCT`) не поддерживается. Если вам нужен `UNION DISTINCT`, то вы можете написать `SELECT DISTINCT` из подзапроса, содержащего `UNION ALL`.
Структура результатов (количество и типы столбцов) у запросов должна совпадать. Но имена столбцов могут отличаться. В этом случае, имена столбцов для общего результата будут взяты из первого запроса. При объединении выполняется приведение типов. Например, если в двух объединяемых запросах одно и тоже поле имеет типы не-`Nullable` и `Nullable` от совместимого типа, то в результате `UNION ALL` получим поле типа `Nullable`.
Запросы - части `UNION ALL` нельзя заключить в скобки. `ORDER BY` и `LIMIT` применяются к отдельным запросам, а не к общему результату. Если вам нужно применить какое-либо преобразование к общему результату, то вы можете разместить все запросы с`UNION ALL` в подзапросе в секции `FROM`.
В отличие от MySQL, файл создаётся на стороне клиента. Если файл с таким именем уже существует, это приведёт к ошибке.
Функциональность доступна в клиенте командной строки и clickhouse-local (попытка выполнить запрос с INTO OUTFILE через HTTP интерфейс приведёт к ошибке).
Формат вывода по умолчанию - TabSeparated, как и в неинтерактивном режиме клиента командной строки.
При указании FORMAT format вы можете получить данные в любом указанном формате.
Это может использоваться для удобства или для создания дампов.
Подробнее смотрите раздел "Форматы".
Если секция FORMAT отсутствует, то используется формат по умолчанию, который зависит от используемого интерфейса для доступа к БД и от настроек. Для HTTP интерфейса, а также для клиента командной строки, используемого в batch-режиме, по умолчанию используется формат TabSeparated. Для клиента командной строки, используемого в интерактивном режиме, по умолчанию используется формат PrettyCompact (прикольные таблички, компактные).
При использовании клиента командной строки данные на клиент передаются во внутреннем эффективном формате. При этом клиент самостоятельно интерпретирует секцию FORMAT запроса и форматирует данные на своей стороне (снимая нагрузку на сеть и сервер).
Если слева стоит один столбец, входящий в индекс, а справа - множество констант, то при выполнении запроса, система воспользуется индексом.
Не перечисляйте слишком большое количество значений (миллионы) явно. Если множество большое - лучше загрузить его во временную таблицу (например, смотрите раздел "Внешние данные для обработки запроса"), и затем воспользоваться подзапросом.
В качестве правой части оператора может быть множество константных выражений, множество кортежей с константными выражениями (показано в примерах выше), а также имя таблицы или подзапрос SELECT в скобках.
Если в качестве правой части оператора указано имя таблицы (например, `UserID IN users`), то это эквивалентно подзапросу `UserID IN (SELECT * FROM users)`. Это используется при работе с внешними данными, отправляемым вместе с запросом. Например, вместе с запросом может быть отправлено множество идентификаторов посетителей, загруженное во временную таблицу users, по которому следует выполнить фильтрацию.
Если в качестве правой части оператора, указано имя таблицы, имеющий движок Set (подготовленное множество, постоянно находящееся в оперативке), то множество не будет создаваться заново при каждом запросе.
При обработке запроса оператор IN будет считать, что результат операции с [NULL](syntax.md#null-literal) всегда равен `0`, независимо от того, находится `NULL` в правой или левой части оператора. Значения `NULL` не входят ни в какое множество, не соответствуют друг другу и не могут сравниваться.
Рассмотрим для примера таблицу `t_null`:
```
┌─x─┬────y─┐
│ 1 │ ᴺᵁᴸᴸ │
│ 2 │ 3 │
└───┴──────┘
```
При выполнении запроса `SELECT x FROM t_null WHERE y IN (NULL,3)` получим следующий результат:
```
┌─x─┐
│ 2 │
└───┘
```
Видно, что строка, в которой `y = NULL`, выброшена из результатов запроса. Это произошло потому, что ClickHouse не может решить входит ли `NULL` в множество `(NULL,3)`, возвращает результат операции `0`, а`SELECT` выбрасывает эту строку из финальной выдачи.
Существует два варианта IN-ов с подзапросами (аналогично для JOIN-ов): обычный `IN` / `JOIN` и `GLOBAL IN` / `GLOBAL JOIN`. Они отличаются способом выполнения при распределённой обработке запроса.
Помните, что алгоритмы, описанные ниже, могут работать иначе в зависимости от [настройки](../operations/settings/settings.md#settings-distributed_product_mode) `distributed_product_mode`.
При использовании `GLOBAL IN` / `GLOBAL JOIN-а`, сначала выполняются все подзапросы для `GLOBAL IN` / `GLOBAL JOIN-ов`, и результаты складываются во временные таблицы. Затем эти временные таблицы передаются на каждый удалённый сервер, и на них выполняются запросы, с использованием этих переданных временных данных.
Рассмотрим это на примерах. Пусть на каждом сервере кластера есть обычная таблица **local_table**. Пусть также есть таблица **distributed_table** типа **Distributed**, которая смотрит на все серверы кластера.
При запросе к распределённой таблице **distributed_table**, запрос будет отправлен на все удалённые серверы, и на них будет выполнен с использованием таблицы **local_table**.
, выполнен параллельно на каждом из них до стадии, позволяющей объединить промежуточные результаты; затем промежуточные результаты вернутся на сервер-инициатор запроса, будут на нём объединены, и финальный результат будет отправлен клиенту.
То есть, множество в секции IN будет собрано на каждом сервере независимо, только по тем данным, которые есть локально на каждом из серверов.
Это будет работать правильно и оптимально, если вы предусмотрели такой случай, и раскладываете данные по серверам кластера таким образом, чтобы данные одного UserID-а лежали только на одном сервере. В таком случае все необходимые данные будут присутствовать на каждом сервере локально. В противном случае результат будет посчитан неточно. Назовём этот вариант запроса "локальный IN".
Чтобы исправить работу запроса, когда данные размазаны по серверам кластера произвольным образом, можно было бы указать **distributed_table** внутри подзапроса. Запрос будет выглядеть так:
На каждом удалённом сервере начнёт выполняться подзапрос. Так как в подзапросе используется распределённая таблица, то подзапрос будет, на каждом удалённом сервере, снова отправлен на каждый удалённый сервер, в виде
Например, если у вас кластер из 100 серверов, то выполнение всего запроса потребует 10 000 элементарных запросов, что, как правило, является неприемлемым.
В таких случаях всегда следует использовать GLOBAL IN вместо IN. Рассмотрим его работу для запроса
1. При создании временной таблицы данные не уникализируются. Чтобы уменьшить объём передаваемых по сети данных, укажите в подзапросе DISTINCT (для обычного IN-а этого делать не нужно).
2. Временная таблица будет передана на все удалённые серверы. Передача не учитывает топологию сети. Например, если 10 удалённых серверов расположены в удалённом относительно сервера-инициатора запроса датацентре, то по каналу в удалённый датацентр данные будет переданы 10 раз. Старайтесь не использовать большие множества при использовании GLOBAL IN.
3. При передаче данных на удалённые серверы не настраивается ограничение использования сетевой полосы. Вы можете перегрузить сеть.
4. Старайтесь распределять данные по серверам так, чтобы в GLOBAL IN-ах не было частой необходимости.
5. Если в GLOBAL IN есть частая необходимость, то спланируйте размещение кластера ClickHouse таким образом, чтобы в каждом датацентре была хотя бы одна реплика каждого шарда, и среди них была быстрая сеть - чтобы запрос целиком можно было бы выполнить, передавая данные в пределах одного датацентра.
В секции `GLOBAL IN` также имеет смысл указывать локальную таблицу - в случае, если эта локальная таблица есть только на сервере-инициаторе запроса, и вы хотите воспользоваться данными из неё на удалённых серверах.
Вы можете получить в дополнение к результату также минимальные и максимальные значения по столбцам результата. Для этого выставите настройку **extremes** в 1. Минимумы и максимумы считаются для числовых типов, дат, дат-с-временем. Для остальных столбцов будут выведены значения по умолчанию.
Вычисляются дополнительные две строчки - минимумы и максимумы, соответственно. Эти дополнительные две строчки выводятся в форматах JSON\*, TabSeparated\*, Pretty\* отдельно от остальных строчек. В остальных форматах они не выводится.
В форматах JSON\* экстремальные значения выводятся отдельным полем extremes. В форматах TabSeparated\* строчка выводится после основного результата и после totals, если есть. Перед ней (после остальных данных) вставляется пустая строка. В форматах Pretty\* строчка выводится отдельной табличкой после основного результата и после totals, если есть.
Экстремальные значения считаются по строчкам, прошедшим через LIMIT. Но при этом, при использовании LIMIT offset, size, строчки до offset учитываются в extremes. В потоковых запросах, в результате может учитываться также небольшое количество строчек, прошедших LIMIT.
В любом месте запроса, вместо выражения, может стоять звёздочка. При анализе запроса звёздочка раскрывается в список всех столбцов таблицы (за исключением `MATERIALIZED` и `ALIAS` столбцов). Есть лишь немного случаев, когда оправдано использовать звёздочку:
В других случаях использование звёздочки является издевательством над системой, так как вместо преимуществ столбцовой СУБД вы получаете недостатки. То есть использовать звёздочку не рекомендуется.