ClickHouse/src/AggregateFunctions/AggregateFunctionSum.h

319 lines
9.5 KiB
C++
Raw Normal View History

2011-09-25 05:07:47 +00:00
#pragma once
#include <type_traits>
#include <IO/WriteHelpers.h>
#include <IO/ReadHelpers.h>
2011-09-25 05:07:47 +00:00
#include <DataTypes/DataTypesNumber.h>
2018-09-11 18:42:06 +00:00
#include <DataTypes/DataTypesDecimal.h>
#include <Columns/ColumnVector.h>
2011-09-25 05:07:47 +00:00
#include <AggregateFunctions/IAggregateFunction.h>
2011-09-25 05:07:47 +00:00
namespace DB
{
template <typename T>
struct AggregateFunctionSumData
2011-09-25 05:07:47 +00:00
{
2017-08-22 17:29:02 +00:00
T sum{};
void ALWAYS_INLINE add(T value)
{
sum += value;
}
2020-05-18 03:50:53 +00:00
/// Vectorized version
template <typename Value>
void NO_INLINE addMany(const Value * __restrict ptr, size_t count)
2020-05-18 03:50:53 +00:00
{
/// Compiler cannot unroll this loop, do it manually.
/// (at least for floats, most likely due to the lack of -fassociative-math)
2020-05-18 03:50:53 +00:00
/// Something around the number of SSE registers * the number of elements fit in register.
constexpr size_t unroll_count = 128 / sizeof(T);
T partial_sums[unroll_count]{};
const auto * end = ptr + count;
const auto * unrolled_end = ptr + (count / unroll_count * unroll_count);
while (ptr < unrolled_end)
{
for (size_t i = 0; i < unroll_count; ++i)
partial_sums[i] += ptr[i];
ptr += unroll_count;
}
for (size_t i = 0; i < unroll_count; ++i)
sum += partial_sums[i];
while (ptr < end)
{
sum += *ptr;
++ptr;
}
}
template <typename Value>
void NO_INLINE addManyNotNull(const Value * __restrict ptr, const UInt8 * __restrict null_map, size_t count)
{
constexpr size_t unroll_count = 128 / sizeof(T);
T partial_sums[unroll_count]{};
const auto * end = ptr + count;
const auto * unrolled_end = ptr + (count / unroll_count * unroll_count);
while (ptr < unrolled_end)
{
for (size_t i = 0; i < unroll_count; ++i)
if (!null_map[i])
partial_sums[i] += ptr[i];
ptr += unroll_count;
null_map += unroll_count;
}
for (size_t i = 0; i < unroll_count; ++i)
sum += partial_sums[i];
while (ptr < end)
{
if (!*null_map)
sum += *ptr;
++ptr;
++null_map;
}
}
void merge(const AggregateFunctionSumData & rhs)
{
sum += rhs.sum;
}
void write(WriteBuffer & buf) const
{
writeBinary(sum, buf);
}
void read(ReadBuffer & buf)
{
readBinary(sum, buf);
}
T get() const
{
return sum;
}
};
template <typename T>
struct AggregateFunctionSumKahanData
{
static_assert(std::is_floating_point_v<T>,
"It doesn't make sense to use Kahan Summation algorithm for non floating point types");
T sum{};
T compensation{};
2020-05-18 03:50:53 +00:00
template <typename Value>
void ALWAYS_INLINE addImpl(Value value, T & out_sum, T & out_compensation)
2020-05-18 03:50:53 +00:00
{
auto compensated_value = value - out_compensation;
auto new_sum = out_sum + compensated_value;
out_compensation = (new_sum - out_sum) - compensated_value;
out_sum = new_sum;
}
void ALWAYS_INLINE add(T value)
{
2020-05-18 03:50:53 +00:00
addImpl(value, sum, compensation);
}
/// Vectorized version
template <typename Value>
void NO_INLINE addMany(const Value * __restrict ptr, size_t count)
2020-05-18 03:50:53 +00:00
{
2020-05-21 12:04:15 +00:00
/// Less than in ordinary sum, because the algorithm is more complicated and too large loop unrolling is questionable.
/// But this is just a guess.
constexpr size_t unroll_count = 4;
2020-05-18 03:50:53 +00:00
T partial_sums[unroll_count]{};
T partial_compensations[unroll_count]{};
const auto * end = ptr + count;
const auto * unrolled_end = ptr + (count / unroll_count * unroll_count);
while (ptr < unrolled_end)
{
for (size_t i = 0; i < unroll_count; ++i)
addImpl(ptr[i], partial_sums[i], partial_compensations[i]);
ptr += unroll_count;
}
for (size_t i = 0; i < unroll_count; ++i)
mergeImpl(sum, compensation, partial_sums[i], partial_compensations[i]);
while (ptr < end)
{
addImpl(*ptr, sum, compensation);
++ptr;
}
}
template <typename Value>
void NO_INLINE addManyNotNull(const Value * __restrict ptr, const UInt8 * __restrict null_map, size_t count)
{
constexpr size_t unroll_count = 4;
T partial_sums[unroll_count]{};
T partial_compensations[unroll_count]{};
const auto * end = ptr + count;
const auto * unrolled_end = ptr + (count / unroll_count * unroll_count);
while (ptr < unrolled_end)
{
for (size_t i = 0; i < unroll_count; ++i)
if (!null_map[i])
addImpl(ptr[i], partial_sums[i], partial_compensations[i]);
ptr += unroll_count;
null_map += unroll_count;
}
for (size_t i = 0; i < unroll_count; ++i)
mergeImpl(sum, compensation, partial_sums[i], partial_compensations[i]);
while (ptr < end)
{
if (!*null_map)
addImpl(*ptr, sum, compensation);
++ptr;
++null_map;
}
}
2020-05-18 03:50:53 +00:00
void ALWAYS_INLINE mergeImpl(T & to_sum, T & to_compensation, T from_sum, T from_compensation)
{
auto raw_sum = to_sum + from_sum;
auto rhs_compensated = raw_sum - to_sum;
2020-05-21 12:07:12 +00:00
/// Kahan summation is tricky because it depends on non-associativity of float arithmetic.
/// Do not simplify this expression if you are not sure.
2020-05-18 03:50:53 +00:00
auto compensations = ((from_sum - rhs_compensated) + (to_sum - (raw_sum - rhs_compensated))) + compensation + from_compensation;
to_sum = raw_sum + compensations;
to_compensation = compensations - (to_sum - raw_sum);
}
void merge(const AggregateFunctionSumKahanData & rhs)
{
2020-05-18 03:50:53 +00:00
mergeImpl(sum, compensation, rhs.sum, rhs.compensation);
}
void write(WriteBuffer & buf) const
{
writeBinary(sum, buf);
writeBinary(compensation, buf);
}
void read(ReadBuffer & buf)
{
readBinary(sum, buf);
readBinary(compensation, buf);
}
T get() const
{
return sum;
}
};
2015-11-11 02:04:23 +00:00
enum AggregateFunctionSumType
{
AggregateFunctionTypeSum,
AggregateFunctionTypeSumWithOverflow,
AggregateFunctionTypeSumKahan,
};
2017-03-09 00:56:38 +00:00
/// Counts the sum of the numbers.
template <typename T, typename TResult, typename Data, AggregateFunctionSumType Type>
class AggregateFunctionSum final : public IAggregateFunctionDataHelper<Data, AggregateFunctionSum<T, TResult, Data, Type>>
{
2011-09-25 05:07:47 +00:00
public:
using ResultDataType = std::conditional_t<IsDecimalNumber<T>, DataTypeDecimal<TResult>, DataTypeNumber<TResult>>;
using ColVecType = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<T>, ColumnVector<T>>;
using ColVecResult = std::conditional_t<IsDecimalNumber<T>, ColumnDecimal<TResult>, ColumnVector<TResult>>;
String getName() const override
{
if constexpr (Type == AggregateFunctionTypeSum)
return "sum";
else if constexpr (Type == AggregateFunctionTypeSumWithOverflow)
return "sumWithOverflow";
else if constexpr (Type == AggregateFunctionTypeSumKahan)
return "sumKahan";
__builtin_unreachable();
}
AggregateFunctionSum(const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<Data, AggregateFunctionSum<T, TResult, Data, Type>>(argument_types_, {})
2019-02-11 19:26:32 +00:00
, scale(0)
{}
AggregateFunctionSum(const IDataType & data_type, const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<Data, AggregateFunctionSum<T, TResult, Data, Type>>(argument_types_, {})
2019-02-11 19:26:32 +00:00
, scale(getDecimalScale(data_type))
{}
DataTypePtr getReturnType() const override
{
if constexpr (IsDecimalNumber<T>)
return std::make_shared<ResultDataType>(ResultDataType::maxPrecision(), scale);
else
return std::make_shared<ResultDataType>();
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena *) const override
{
const auto & column = static_cast<const ColVecType &>(*columns[0]);
this->data(place).add(column.getData()[row_num]);
}
2020-05-18 03:50:53 +00:00
/// Vectorized version when there is no GROUP BY keys.
void addBatchSinglePlace(size_t batch_size, AggregateDataPtr place, const IColumn ** columns, Arena *) const override
{
const auto & column = static_cast<const ColVecType &>(*columns[0]);
this->data(place).addMany(column.getData().data(), batch_size);
}
void addBatchSinglePlaceNotNull(
size_t batch_size, AggregateDataPtr place, const IColumn ** columns, const UInt8 * null_map, Arena *) const override
{
const auto & column = static_cast<const ColVecType &>(*columns[0]);
this->data(place).addManyNotNull(column.getData().data(), null_map, batch_size);
}
2017-12-01 21:51:50 +00:00
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).read(buf);
}
void insertResultInto(AggregateDataPtr place, IColumn & to) const override
{
auto & column = static_cast<ColVecResult &>(to);
2018-09-11 18:42:06 +00:00
column.getData().push_back(this->data(place).get());
}
private:
UInt32 scale;
};
2011-09-25 05:07:47 +00:00
}