ClickHouse/docs/ru/engines/table-engines/integrations/kafka.md

196 lines
13 KiB
Markdown
Raw Normal View History

---
2021-03-14 17:11:26 +00:00
toc_priority: 8
toc_title: Kafka
---
# Kafka {#kafka}
Движок работает с [Apache Kafka](http://kafka.apache.org/).
Kafka позволяет:
- Публиковать/подписываться на потоки данных.
- Организовать отказоустойчивое хранилище.
- Обрабатывать потоки по мере их появления.
## Создание таблицы {#table_engine-kafka-creating-a-table}
``` sql
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
...
) ENGINE = Kafka()
SETTINGS
kafka_broker_list = 'host:port',
kafka_topic_list = 'topic1,topic2,...',
kafka_group_name = 'group_name',
kafka_format = 'data_format'[,]
[kafka_row_delimiter = 'delimiter_symbol',]
[kafka_schema = '',]
[kafka_num_consumers = N,]
[kafka_skip_broken_messages = N]
2021-02-11 18:07:38 +00:00
[kafka_commit_every_batch = 0,]
[kafka_thread_per_consumer = 0]
```
Обязательные параметры:
2021-02-11 18:07:38 +00:00
- `kafka_broker_list` — перечень брокеров, разделенный запятыми (`localhost:9092`).
- `kafka_topic_list` — перечень необходимых топиков Kafka.
- `kafka_group_name` — группа потребителя Kafka. Отступы для чтения отслеживаются для каждой группы отдельно. Если необходимо, чтобы сообщения не повторялись на кластере, используйте везде одно имя группы.
- `kafka_format` — формат сообщений. Названия форматов должны быть теми же, что можно использовать в секции `FORMAT`, например, `JSONEachRow`. Подробнее читайте в разделе [Форматы](../../../interfaces/formats.md).
Опциональные параметры:
2021-02-11 18:07:38 +00:00
- `kafka_row_delimiter` — символ-разделитель записей (строк), которым завершается сообщение.
- `kafka_schema` — опциональный параметр, необходимый, если используется формат, требующий определения схемы. Например, [Capn Proto](https://capnproto.org/) требует путь к файлу со схемой и название корневого объекта `schema.capnp:Message`.
- `kafka_num_consumers` — количество потребителей (consumer) на таблицу. По умолчанию: `1`. Укажите больше потребителей, если пропускная способность одного потребителя недостаточна. Общее число потребителей не должно превышать количество партиций в топике, так как на одну партицию может быть назначено не более одного потребителя.
2021-02-16 21:25:34 +00:00
- `kafka_max_block_size` — максимальный размер пачек (в сообщениях) для poll (по умолчанию `max_block_size`).
2021-02-11 18:07:38 +00:00
- `kafka_skip_broken_messages` — максимальное количество некорректных сообщений в блоке. Если `kafka_skip_broken_messages = N`, то движок отбрасывает `N` сообщений Кафки, которые не получилось обработать. Одно сообщение в точности соответствует одной записи (строке). Значение по умолчанию 0.
- `kafka_commit_every_batch` — включает или отключает режим записи каждой принятой и обработанной пачки по отдельности вместо единой записи целого блока (по умолчанию `0`).
- `kafka_thread_per_consumer` — включает или отключает предоставление отдельного потока каждому потребителю (по умолчанию `0`). При включенном режиме каждый потребитель сбрасывает данные независимо и параллельно, при отключённом — строки с данными от нескольких потребителей собираются в один блок.
Примеры
``` sql
CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
SELECT * FROM queue LIMIT 5;
CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka SETTINGS kafka_broker_list = 'localhost:9092',
kafka_topic_list = 'topic',
kafka_group_name = 'group1',
kafka_format = 'JSONEachRow',
kafka_num_consumers = 4;
CREATE TABLE queue2 (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1')
SETTINGS kafka_format = 'JSONEachRow',
kafka_num_consumers = 4;
```
<details markdown="1">
<summary>Устаревший способ создания таблицы</summary>
!!! attention "Attention"
Не используйте этот метод в новых проектах. По возможности переключите старые проекты на метод, описанный выше.
``` sql
Kafka(kafka_broker_list, kafka_topic_list, kafka_group_name, kafka_format
[, kafka_row_delimiter, kafka_schema, kafka_num_consumers, kafka_skip_broken_messages])
```
</details>
## Описание {#opisanie}
Полученные сообщения отслеживаются автоматически, поэтому из одной группы каждое сообщение считывается только один раз. Если необходимо получить данные дважды, то создайте копию таблицы с другим именем группы.
Группы пластичны и синхронизированы на кластере. Например, если есть 10 топиков и 5 копий таблицы в кластере, то в каждую копию попадет по 2 топика. Если количество копий изменится, то распределение топиков по копиям изменится автоматически. Подробно читайте об этом на http://kafka.apache.org/intro.
Чтение сообщения с помощью `SELECT` не слишком полезно (разве что для отладки), поскольку каждое сообщения может быть прочитано только один раз. Практичнее создавать потоки реального времени с помощью материализованных преставлений. Для этого:
1. Создайте потребителя Kafka с помощью движка и рассматривайте его как поток данных.
2. Создайте таблицу с необходимой структурой.
3. Создайте материализованное представление, которое преобразует данные от движка и помещает их в ранее созданную таблицу.
Когда к движку присоединяется материализованное представление (`MATERIALIZED VIEW`), оно начинает в фоновом режиме собирать данные. Это позволяет непрерывно получать сообщения от Kafka и преобразовывать их в необходимый формат с помощью `SELECT`.
Материализованных представлений у одной kafka таблицы может быть сколько угодно, они не считывают данные из таблицы kafka непосредственно, а получают новые записи (блоками), таким образом можно писать в несколько таблиц с разным уровнем детализации (с группировкой - агрегацией и без).
Пример:
``` sql
CREATE TABLE queue (
timestamp UInt64,
level String,
message String
) ENGINE = Kafka('localhost:9092', 'topic', 'group1', 'JSONEachRow');
CREATE TABLE daily (
day Date,
level String,
total UInt64
) ENGINE = SummingMergeTree(day, (day, level), 8192);
CREATE MATERIALIZED VIEW consumer TO daily
AS SELECT toDate(toDateTime(timestamp)) AS day, level, count() as total
FROM queue GROUP BY day, level;
SELECT level, sum(total) FROM daily GROUP BY level;
```
2020-10-13 17:23:29 +00:00
Для улучшения производительности полученные сообщения группируются в блоки размера [max_insert_block_size](../../../operations/settings/settings.md#settings-max_insert_block_size). Если блок не удалось сформировать за [stream_flush_interval_ms](../../../operations/settings/settings.md#stream-flush-interval-ms) миллисекунд, то данные будут сброшены в таблицу независимо от полноты блока.
Чтобы остановить получение данных топика или изменить логику преобразования, отсоедините материализованное представление:
``` sql
DETACH TABLE consumer;
ATTACH TABLE consumer;
```
Если необходимо изменить целевую таблицу с помощью `ALTER`, то материализованное представление рекомендуется отключить, чтобы избежать несостыковки между целевой таблицей и данными от представления.
## Конфигурация {#konfiguratsiia}
Аналогично GraphiteMergeTree, движок Kafka поддерживает расширенную конфигурацию с помощью конфигурационного файла ClickHouse. Существует два конфигурационных ключа, которые можно использовать: глобальный (`kafka`) и по топикам (`kafka_topic_*`). Сначала применяется глобальная конфигурация, затем конфигурация по топикам (если она существует).
``` xml
<!-- Global configuration options for all tables of Kafka engine type -->
<kafka>
<debug>cgrp</debug>
<auto_offset_reset>smallest</auto_offset_reset>
</kafka>
<!-- Configuration specific for topic "logs" -->
<kafka_logs>
<retry_backoff_ms>250</retry_backoff_ms>
<fetch_min_bytes>100000</fetch_min_bytes>
</kafka_logs>
```
В документе [librdkafka configuration reference](https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md) можно увидеть список возможных опций конфигурации. Используйте подчеркивание (`_`) вместо точки в конфигурации ClickHouse. Например, `check.crcs=true` будет соответствовать `<check_crcs>true</check_crcs>`.
### Поддержка Kerberos {#kafka-kerberos-support}
Чтобы начать работу с Kafka с поддержкой Kerberos, добавьте дочерний элемент `security_protocol` со значением `sasl_plaintext`. Этого будет достаточно, если получен тикет на получение тикета (ticket-granting ticket) Kerberos и он кэшируется средствами ОС.
ClickHouse может поддерживать учетные данные Kerberos с помощью файла keytab. Рассмотрим дочерние элементы `sasl_kerberos_service_name`, `sasl_kerberos_keytab`, `sasl_kerberos_principal` и `sasl.kerberos.kinit.cmd`.
Пример:
``` xml
<!-- Kerberos-aware Kafka -->
<kafka>
<security_protocol>SASL_PLAINTEXT</security_protocol>
<sasl_kerberos_keytab>/home/kafkauser/kafkauser.keytab</sasl_kerberos_keytab>
<sasl_kerberos_principal>kafkauser/kafkahost@EXAMPLE.COM</sasl_kerberos_principal>
</kafka>
```
## Виртуальные столбцы {#virtualnye-stolbtsy}
- `_topic` — топик Kafka.
- `_key` — ключ сообщения.
- `_offset` — оффсет сообщения.
- `_timestamp` — временная метка сообщения.
- `_partition` — секция топика Kafka.
**Смотрите также**
- [Виртуальные столбцы](index.md#table_engines-virtual_columns)
- [background_schedule_pool_size](../../../operations/settings/settings.md#background_schedule_pool_size)