ClickHouse/docs/ru/guides/apply-catboost-model.md

236 lines
9.2 KiB
Markdown
Raw Normal View History

---
toc_priority: 41
toc_title: "\u041f\u0440\u0438\u043c\u0435\u043d\u0435\u043d\u0438\u0435\u0020\u043c\u043e\u0434\u0435\u043b\u0438\u0020\u0043\u0061\u0074\u0042\u006f\u006f\u0073\u0074\u0020\u0432\u0020\u0043\u006c\u0069\u0063\u006b\u0048\u006f\u0075\u0073\u0065"
---
# Применение модели CatBoost в ClickHouse {#applying-catboost-model-in-clickhouse}
2019-10-14 12:39:42 +00:00
[CatBoost](https://catboost.ai) — открытая программная библиотека разработанная компанией [Яндекс](https://yandex.ru/company/) для машинного обучения, которая использует схему градиентного бустинга.
2019-08-22 11:34:56 +00:00
С помощью этой инструкции вы научитесь применять предобученные модели в ClickHouse: в результате вы запустите вывод модели из SQL.
Чтобы применить модель CatBoost в ClickHouse:
1. [Создайте таблицу](#create-table).
2. [Вставьте данные в таблицу](#insert-data-to-table).
3. [Интегрируйте CatBoost в ClickHouse](#integrate-catboost-into-clickhouse) (Опциональный шаг).
4. [Запустите вывод модели из SQL](#run-model-inference).
2019-08-22 05:45:45 +00:00
Подробнее об обучении моделей в CatBoost, см. [Обучение и применение моделей](https://catboost.ai/docs/features/training.html#training).
2019-08-22 11:34:56 +00:00
## Перед началом работы {#prerequisites}
Если у вас еще нет [Docker](https://docs.docker.com/install/), установите его.
2019-08-22 11:34:56 +00:00
!!! note "Примечание"
[Docker](https://www.docker.com) это программная платформа для создания контейнеров, которые изолируют установку CatBoost и ClickHouse от остальной части системы.
2019-08-23 10:55:34 +00:00
Перед применением модели CatBoost:
**1.** Скачайте [Docker-образ](https://hub.docker.com/r/yandex/tutorial-catboost-clickhouse) из реестра:
``` bash
$ docker pull yandex/tutorial-catboost-clickhouse
```
2019-08-22 11:34:56 +00:00
Данный Docker-образ содержит все необходимое для запуска CatBoost и ClickHouse: код, среду выполнения, библиотеки, переменные окружения и файлы конфигурации.
2019-08-22 11:34:56 +00:00
**2.** Проверьте, что Docker-образ успешно скачался:
``` bash
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
2019-10-10 12:17:39 +00:00
yandex/tutorial-catboost-clickhouse latest 622e4d17945b 22 hours ago 1.37GB
```
2019-08-22 11:34:56 +00:00
**3.** Запустите Docker-контейнер основанный на данном образе:
``` bash
$ docker run -it -p 8888:8888 yandex/tutorial-catboost-clickhouse
```
2019-08-22 05:45:45 +00:00
## 1. Создайте таблицу {#create-table}
2019-10-10 12:17:39 +00:00
Чтобы создать таблицу для обучающей выборки:
2019-10-10 12:17:39 +00:00
**1.** Запустите клиент ClickHouse:
``` bash
$ clickhouse client
```
2019-08-22 11:34:56 +00:00
!!! note "Примечание"
2019-10-10 12:17:39 +00:00
Сервер ClickHouse уже запущен внутри Docker-контейнера.
**2.** Создайте таблицу в ClickHouse с помощью следующей команды:
``` sql
:) CREATE TABLE amazon_train
(
date Date MATERIALIZED today(),
ACTION UInt8,
RESOURCE UInt32,
MGR_ID UInt32,
ROLE_ROLLUP_1 UInt32,
ROLE_ROLLUP_2 UInt32,
ROLE_DEPTNAME UInt32,
ROLE_TITLE UInt32,
ROLE_FAMILY_DESC UInt32,
ROLE_FAMILY UInt32,
ROLE_CODE UInt32
)
2020-01-09 16:42:37 +00:00
ENGINE = MergeTree ORDER BY date
```
**3.** Выйдите из клиента ClickHouse:
``` sql
:) exit
```
2019-10-10 12:17:39 +00:00
## 2. Вставьте данные в таблицу {#insert-data-to-table}
Чтобы вставить данные:
**1.** Выполните следующую команду:
``` bash
$ clickhouse client --host 127.0.0.1 --query 'INSERT INTO amazon_train FORMAT CSVWithNames' < ~/amazon/train.csv
```
**2.** Запустите клиент ClickHouse:
``` bash
$ clickhouse client
```
2019-10-14 12:39:42 +00:00
**3.** Проверьте, что данные успешно загрузились:
``` sql
:) SELECT count() FROM amazon_train
2019-08-22 15:13:36 +00:00
SELECT count()
FROM amazon_train
+-count()-+
2019-10-10 12:17:39 +00:00
| 65538 |
+---------+
```
2019-10-14 10:33:39 +00:00
## 3. Интегрируйте CatBoost в ClickHouse {#integrate-catboost-into-clickhouse}
!!! note "Примечание"
**Опциональный шаг.** Docker-образ содержит все необходимое для запуска CatBoost и ClickHouse.
2019-10-14 10:33:39 +00:00
Чтобы интегрировать CatBoost в ClickHouse:
2019-10-14 12:39:42 +00:00
**1.** Создайте библиотеку для оценки модели.
2019-10-14 12:39:42 +00:00
Наиболее быстрый способ оценить модель CatBoost — это скомпилировать библиотеку `libcatboostmodel.<so|dll|dylib>`. Подробнее о том, как скомпилировать библиотеку, читайте в [документации CatBoost](https://catboost.ai/docs/concepts/c-plus-plus-api_dynamic-c-pluplus-wrapper.html).
2019-10-14 10:33:39 +00:00
2019-10-14 13:08:46 +00:00
**2.** Создайте в любом месте новую директорию с произвольным названием, например `data` и поместите в нее созданную библиотеку. Docker-образ уже содержит библиотеку `data/libcatboostmodel.so`.
2019-10-14 10:33:39 +00:00
**3.** Создайте в любом месте новую директорию для конфигурации модели с произвольным названием, например `models`.
**4.** Создайте файл конфигурации модели с произвольным названием, например `models/amazon_model.xml`.
**5.** Опишите конфигурацию модели:
``` xml
<models>
<model>
<!-- Тип модели. В настоящий момент ClickHouse предоставляет только модель catboost. -->
<type>catboost</type>
<!-- Имя модели. -->
<name>amazon</name>
<!-- Путь к обученной модели. -->
<path>/home/catboost/tutorial/catboost_model.bin</path>
<!-- Интервал обновления. -->
<lifetime>0</lifetime>
</model>
</models>
```
2019-10-14 13:13:26 +00:00
**6.** Добавьте в конфигурацию ClickHouse путь к CatBoost и конфигурации модели:
``` xml
2019-10-14 10:33:39 +00:00
<!-- Файл etc/clickhouse-server/config.d/models_config.xml. -->
2019-10-14 13:08:46 +00:00
<catboost_dynamic_library_path>/home/catboost/data/libcatboostmodel.so</catboost_dynamic_library_path>
<models_config>/home/catboost/models/*_model.xml</models_config>
```
2019-08-22 11:34:56 +00:00
2019-10-10 12:17:39 +00:00
## 4. Запустите вывод модели из SQL {#run-model-inference}
2019-10-10 12:17:39 +00:00
Для тестирования модели запустите клиент ClickHouse `$ clickhouse client`.
2019-08-22 11:34:56 +00:00
Проверьте, что модель работает:
``` sql
:) SELECT
modelEvaluate('amazon',
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) > 0 AS prediction,
ACTION AS target
FROM amazon_train
LIMIT 10
```
!!! note "Примечание"
Функция [modelEvaluate](../sql-reference/functions/other-functions.md#function-modelevaluate) возвращает кортежи (tuple) с исходными прогнозами по классам для моделей с несколькими классами.
2019-08-22 11:34:56 +00:00
Спрогнозируйте вероятность:
``` sql
:) SELECT
modelEvaluate('amazon',
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) AS prediction,
1. / (1 + exp(-prediction)) AS probability,
ACTION AS target
FROM amazon_train
LIMIT 10
```
!!! note "Примечание"
Подробнее про функцию [exp()](../sql-reference/functions/math-functions.md).
2019-08-22 11:34:56 +00:00
Посчитайте логистическую функцию потерь (LogLoss) на всей выборке:
``` sql
:) SELECT -avg(tg * log(prob) + (1 - tg) * log(1 - prob)) AS logloss
FROM
(
SELECT
modelEvaluate('amazon',
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) AS prediction,
1. / (1. + exp(-prediction)) AS prob,
ACTION AS tg
FROM amazon_train
)
2019-08-22 11:34:56 +00:00
```
!!! note "Примечание"
Подробнее про функции [avg()](../sql-reference/aggregate-functions/reference/avg.md#agg_function-avg), [log()](../sql-reference/functions/math-functions.md).