2020-03-20 18:20:59 +00:00
|
|
|
|
# 纽约市出租车数据 {#niu-yue-shi-chu-zu-che-shu-ju}
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
2019-10-28 04:18:22 +00:00
|
|
|
|
纽约市出租车数据有以下两个方式获取:
|
|
|
|
|
|
|
|
|
|
从原始数据导入
|
|
|
|
|
下载预处理好的分区数据
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
## 怎样导入原始数据 {#zen-yang-dao-ru-yuan-shi-shu-ju}
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
可以参考https://github.com/toddwschneider/nyc-taxi-data和http://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html中的关于数据集结构描述与数据下载指令说明。
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
数据集包含227GB的CSV文件。这大约需要一个小时的下载时间(1Gbit带宽下,并行下载大概是一半时间)。
|
|
|
|
|
下载时注意损坏的文件。可以检查文件大小并重新下载损坏的文件。
|
|
|
|
|
|
|
|
|
|
有些文件中包含一些无效的行,您可以使用如下语句修复他们:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` bash
|
2018-10-17 08:19:33 +00:00
|
|
|
|
sed -E '/(.*,){18,}/d' data/yellow_tripdata_2010-02.csv > data/yellow_tripdata_2010-02.csv_
|
|
|
|
|
sed -E '/(.*,){18,}/d' data/yellow_tripdata_2010-03.csv > data/yellow_tripdata_2010-03.csv_
|
|
|
|
|
mv data/yellow_tripdata_2010-02.csv_ data/yellow_tripdata_2010-02.csv
|
|
|
|
|
mv data/yellow_tripdata_2010-03.csv_ data/yellow_tripdata_2010-03.csv
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
然后您必须在PostgreSQL中预处理这些数据。这将创建多边形中的点(以匹配在地图中纽约市中范围),然后通过使用JOIN查询将数据关联组合到一个规范的表中。为了完成这部分操作,您需要安装PostgreSQL的同时安装PostGIS插件。
|
|
|
|
|
|
|
|
|
|
运行`initialize_database.sh`时要小心,并手动重新检查是否正确创建了所有表。
|
|
|
|
|
|
|
|
|
|
在PostgreSQL中处理每个月的数据大约需要20-30分钟,总共大约需要48小时。
|
|
|
|
|
|
|
|
|
|
您可以按如下方式检查下载的行数:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` bash
|
2019-10-28 04:18:22 +00:00
|
|
|
|
$ time psql nyc-taxi-data -c "SELECT count(*) FROM trips;"
|
2018-10-17 08:19:33 +00:00
|
|
|
|
## Count
|
|
|
|
|
1298979494
|
|
|
|
|
(1 row)
|
|
|
|
|
|
|
|
|
|
real 7m9.164s
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
(根据Mark Litwintschik的系列博客报道数据略多余11亿行)
|
|
|
|
|
|
|
|
|
|
PostgreSQL处理这些数据大概需要370GB的磁盘空间。
|
|
|
|
|
|
|
|
|
|
从PostgreSQL中导出数据:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
COPY
|
|
|
|
|
(
|
|
|
|
|
SELECT trips.id,
|
|
|
|
|
trips.vendor_id,
|
|
|
|
|
trips.pickup_datetime,
|
|
|
|
|
trips.dropoff_datetime,
|
|
|
|
|
trips.store_and_fwd_flag,
|
|
|
|
|
trips.rate_code_id,
|
|
|
|
|
trips.pickup_longitude,
|
|
|
|
|
trips.pickup_latitude,
|
|
|
|
|
trips.dropoff_longitude,
|
|
|
|
|
trips.dropoff_latitude,
|
|
|
|
|
trips.passenger_count,
|
|
|
|
|
trips.trip_distance,
|
|
|
|
|
trips.fare_amount,
|
|
|
|
|
trips.extra,
|
|
|
|
|
trips.mta_tax,
|
|
|
|
|
trips.tip_amount,
|
|
|
|
|
trips.tolls_amount,
|
|
|
|
|
trips.ehail_fee,
|
|
|
|
|
trips.improvement_surcharge,
|
|
|
|
|
trips.total_amount,
|
|
|
|
|
trips.payment_type,
|
|
|
|
|
trips.trip_type,
|
|
|
|
|
trips.pickup,
|
|
|
|
|
trips.dropoff,
|
|
|
|
|
|
|
|
|
|
cab_types.type cab_type,
|
|
|
|
|
|
|
|
|
|
weather.precipitation_tenths_of_mm rain,
|
|
|
|
|
weather.snow_depth_mm,
|
|
|
|
|
weather.snowfall_mm,
|
|
|
|
|
weather.max_temperature_tenths_degrees_celsius max_temp,
|
|
|
|
|
weather.min_temperature_tenths_degrees_celsius min_temp,
|
|
|
|
|
weather.average_wind_speed_tenths_of_meters_per_second wind,
|
|
|
|
|
|
|
|
|
|
pick_up.gid pickup_nyct2010_gid,
|
|
|
|
|
pick_up.ctlabel pickup_ctlabel,
|
|
|
|
|
pick_up.borocode pickup_borocode,
|
|
|
|
|
pick_up.boroname pickup_boroname,
|
|
|
|
|
pick_up.ct2010 pickup_ct2010,
|
|
|
|
|
pick_up.boroct2010 pickup_boroct2010,
|
|
|
|
|
pick_up.cdeligibil pickup_cdeligibil,
|
|
|
|
|
pick_up.ntacode pickup_ntacode,
|
|
|
|
|
pick_up.ntaname pickup_ntaname,
|
|
|
|
|
pick_up.puma pickup_puma,
|
|
|
|
|
|
|
|
|
|
drop_off.gid dropoff_nyct2010_gid,
|
|
|
|
|
drop_off.ctlabel dropoff_ctlabel,
|
|
|
|
|
drop_off.borocode dropoff_borocode,
|
|
|
|
|
drop_off.boroname dropoff_boroname,
|
|
|
|
|
drop_off.ct2010 dropoff_ct2010,
|
|
|
|
|
drop_off.boroct2010 dropoff_boroct2010,
|
|
|
|
|
drop_off.cdeligibil dropoff_cdeligibil,
|
|
|
|
|
drop_off.ntacode dropoff_ntacode,
|
|
|
|
|
drop_off.ntaname dropoff_ntaname,
|
|
|
|
|
drop_off.puma dropoff_puma
|
|
|
|
|
FROM trips
|
|
|
|
|
LEFT JOIN cab_types
|
|
|
|
|
ON trips.cab_type_id = cab_types.id
|
|
|
|
|
LEFT JOIN central_park_weather_observations_raw weather
|
|
|
|
|
ON weather.date = trips.pickup_datetime::date
|
|
|
|
|
LEFT JOIN nyct2010 pick_up
|
|
|
|
|
ON pick_up.gid = trips.pickup_nyct2010_gid
|
|
|
|
|
LEFT JOIN nyct2010 drop_off
|
|
|
|
|
ON drop_off.gid = trips.dropoff_nyct2010_gid
|
|
|
|
|
) TO '/opt/milovidov/nyc-taxi-data/trips.tsv';
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
数据快照的创建速度约为每秒50 MB。 在创建快照时,PostgreSQL以每秒约28 MB的速度从磁盘读取数据。
|
|
|
|
|
这大约需要5个小时。 最终生成的TSV文件为590612904969 bytes。
|
|
|
|
|
|
|
|
|
|
在ClickHouse中创建临时表:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
CREATE TABLE trips
|
|
|
|
|
(
|
|
|
|
|
trip_id UInt32,
|
|
|
|
|
vendor_id String,
|
|
|
|
|
pickup_datetime DateTime,
|
|
|
|
|
dropoff_datetime Nullable(DateTime),
|
|
|
|
|
store_and_fwd_flag Nullable(FixedString(1)),
|
|
|
|
|
rate_code_id Nullable(UInt8),
|
|
|
|
|
pickup_longitude Nullable(Float64),
|
|
|
|
|
pickup_latitude Nullable(Float64),
|
|
|
|
|
dropoff_longitude Nullable(Float64),
|
|
|
|
|
dropoff_latitude Nullable(Float64),
|
|
|
|
|
passenger_count Nullable(UInt8),
|
|
|
|
|
trip_distance Nullable(Float64),
|
|
|
|
|
fare_amount Nullable(Float32),
|
|
|
|
|
extra Nullable(Float32),
|
|
|
|
|
mta_tax Nullable(Float32),
|
|
|
|
|
tip_amount Nullable(Float32),
|
|
|
|
|
tolls_amount Nullable(Float32),
|
|
|
|
|
ehail_fee Nullable(Float32),
|
|
|
|
|
improvement_surcharge Nullable(Float32),
|
|
|
|
|
total_amount Nullable(Float32),
|
|
|
|
|
payment_type Nullable(String),
|
|
|
|
|
trip_type Nullable(UInt8),
|
|
|
|
|
pickup Nullable(String),
|
|
|
|
|
dropoff Nullable(String),
|
|
|
|
|
cab_type Nullable(String),
|
|
|
|
|
precipitation Nullable(UInt8),
|
|
|
|
|
snow_depth Nullable(UInt8),
|
|
|
|
|
snowfall Nullable(UInt8),
|
|
|
|
|
max_temperature Nullable(UInt8),
|
|
|
|
|
min_temperature Nullable(UInt8),
|
|
|
|
|
average_wind_speed Nullable(UInt8),
|
|
|
|
|
pickup_nyct2010_gid Nullable(UInt8),
|
|
|
|
|
pickup_ctlabel Nullable(String),
|
|
|
|
|
pickup_borocode Nullable(UInt8),
|
|
|
|
|
pickup_boroname Nullable(String),
|
|
|
|
|
pickup_ct2010 Nullable(String),
|
|
|
|
|
pickup_boroct2010 Nullable(String),
|
|
|
|
|
pickup_cdeligibil Nullable(FixedString(1)),
|
|
|
|
|
pickup_ntacode Nullable(String),
|
|
|
|
|
pickup_ntaname Nullable(String),
|
|
|
|
|
pickup_puma Nullable(String),
|
|
|
|
|
dropoff_nyct2010_gid Nullable(UInt8),
|
|
|
|
|
dropoff_ctlabel Nullable(String),
|
|
|
|
|
dropoff_borocode Nullable(UInt8),
|
|
|
|
|
dropoff_boroname Nullable(String),
|
|
|
|
|
dropoff_ct2010 Nullable(String),
|
|
|
|
|
dropoff_boroct2010 Nullable(String),
|
|
|
|
|
dropoff_cdeligibil Nullable(String),
|
|
|
|
|
dropoff_ntacode Nullable(String),
|
|
|
|
|
dropoff_ntaname Nullable(String),
|
|
|
|
|
dropoff_puma Nullable(String)
|
|
|
|
|
) ENGINE = Log;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
接下来,需要将字段转换为更正确的数据类型,并且在可能的情况下,消除NULL。
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` bash
|
2019-10-28 04:18:22 +00:00
|
|
|
|
$ time clickhouse-client --query="INSERT INTO trips FORMAT TabSeparated" < trips.tsv
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
real 75m56.214s
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
数据的读取速度为112-140 Mb/秒。
|
|
|
|
|
通过这种方式将数据加载到Log表中需要76分钟。
|
|
|
|
|
这个表中的数据需要使用142 GB的磁盘空间.
|
|
|
|
|
|
|
|
|
|
(也可以直接使用`COPY ... TO PROGRAM`从Postgres中导入数据)
|
|
|
|
|
|
2020-10-13 17:23:29 +00:00
|
|
|
|
由于数据中与天气相关的所有数据(precipitation……average_wind_speed)都填充了NULL。 所以,我们将从最终数据集中删除它们
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
首先,我们使用单台服务器创建表,后面我们将在多台节点上创建这些表。
|
|
|
|
|
|
|
|
|
|
创建表结构并写入数据:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
CREATE TABLE trips_mergetree
|
|
|
|
|
ENGINE = MergeTree(pickup_date, pickup_datetime, 8192)
|
|
|
|
|
AS SELECT
|
|
|
|
|
|
|
|
|
|
trip_id,
|
|
|
|
|
CAST(vendor_id AS Enum8('1' = 1, '2' = 2, 'CMT' = 3, 'VTS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11, 'B02617' = 12, 'B02682' = 13, 'B02764' = 14)) AS vendor_id,
|
|
|
|
|
toDate(pickup_datetime) AS pickup_date,
|
|
|
|
|
ifNull(pickup_datetime, toDateTime(0)) AS pickup_datetime,
|
|
|
|
|
toDate(dropoff_datetime) AS dropoff_date,
|
|
|
|
|
ifNull(dropoff_datetime, toDateTime(0)) AS dropoff_datetime,
|
|
|
|
|
assumeNotNull(store_and_fwd_flag) IN ('Y', '1', '2') AS store_and_fwd_flag,
|
|
|
|
|
assumeNotNull(rate_code_id) AS rate_code_id,
|
|
|
|
|
assumeNotNull(pickup_longitude) AS pickup_longitude,
|
|
|
|
|
assumeNotNull(pickup_latitude) AS pickup_latitude,
|
|
|
|
|
assumeNotNull(dropoff_longitude) AS dropoff_longitude,
|
|
|
|
|
assumeNotNull(dropoff_latitude) AS dropoff_latitude,
|
|
|
|
|
assumeNotNull(passenger_count) AS passenger_count,
|
|
|
|
|
assumeNotNull(trip_distance) AS trip_distance,
|
|
|
|
|
assumeNotNull(fare_amount) AS fare_amount,
|
|
|
|
|
assumeNotNull(extra) AS extra,
|
|
|
|
|
assumeNotNull(mta_tax) AS mta_tax,
|
|
|
|
|
assumeNotNull(tip_amount) AS tip_amount,
|
|
|
|
|
assumeNotNull(tolls_amount) AS tolls_amount,
|
|
|
|
|
assumeNotNull(ehail_fee) AS ehail_fee,
|
|
|
|
|
assumeNotNull(improvement_surcharge) AS improvement_surcharge,
|
|
|
|
|
assumeNotNull(total_amount) AS total_amount,
|
|
|
|
|
CAST((assumeNotNull(payment_type) AS pt) IN ('CSH', 'CASH', 'Cash', 'CAS', 'Cas', '1') ? 'CSH' : (pt IN ('CRD', 'Credit', 'Cre', 'CRE', 'CREDIT', '2') ? 'CRE' : (pt IN ('NOC', 'No Charge', 'No', '3') ? 'NOC' : (pt IN ('DIS', 'Dispute', 'Dis', '4') ? 'DIS' : 'UNK'))) AS Enum8('CSH' = 1, 'CRE' = 2, 'UNK' = 0, 'NOC' = 3, 'DIS' = 4)) AS payment_type_,
|
|
|
|
|
assumeNotNull(trip_type) AS trip_type,
|
|
|
|
|
ifNull(toFixedString(unhex(pickup), 25), toFixedString('', 25)) AS pickup,
|
|
|
|
|
ifNull(toFixedString(unhex(dropoff), 25), toFixedString('', 25)) AS dropoff,
|
|
|
|
|
CAST(assumeNotNull(cab_type) AS Enum8('yellow' = 1, 'green' = 2, 'uber' = 3)) AS cab_type,
|
|
|
|
|
|
|
|
|
|
assumeNotNull(pickup_nyct2010_gid) AS pickup_nyct2010_gid,
|
|
|
|
|
toFloat32(ifNull(pickup_ctlabel, '0')) AS pickup_ctlabel,
|
|
|
|
|
assumeNotNull(pickup_borocode) AS pickup_borocode,
|
|
|
|
|
CAST(assumeNotNull(pickup_boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' = 2, 'Staten Island' = 5)) AS pickup_boroname,
|
|
|
|
|
toFixedString(ifNull(pickup_ct2010, '000000'), 6) AS pickup_ct2010,
|
|
|
|
|
toFixedString(ifNull(pickup_boroct2010, '0000000'), 7) AS pickup_boroct2010,
|
|
|
|
|
CAST(assumeNotNull(ifNull(pickup_cdeligibil, ' ')) AS Enum8(' ' = 0, 'E' = 1, 'I' = 2)) AS pickup_cdeligibil,
|
|
|
|
|
toFixedString(ifNull(pickup_ntacode, '0000'), 4) AS pickup_ntacode,
|
|
|
|
|
|
|
|
|
|
CAST(assumeNotNull(pickup_ntaname) AS Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142, 'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village' = 147, 'S
|
|
|
|
|
|
|
|
|
|
toUInt16(ifNull(pickup_puma, '0')) AS pickup_puma,
|
|
|
|
|
|
|
|
|
|
assumeNotNull(dropoff_nyct2010_gid) AS dropoff_nyct2010_gid,
|
|
|
|
|
toFloat32(ifNull(dropoff_ctlabel, '0')) AS dropoff_ctlabel,
|
|
|
|
|
assumeNotNull(dropoff_borocode) AS dropoff_borocode,
|
|
|
|
|
CAST(assumeNotNull(dropoff_boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' = 2, 'Staten Island' = 5)) AS dropoff_boroname,
|
|
|
|
|
toFixedString(ifNull(dropoff_ct2010, '000000'), 6) AS dropoff_ct2010,
|
|
|
|
|
toFixedString(ifNull(dropoff_boroct2010, '0000000'), 7) AS dropoff_boroct2010,
|
|
|
|
|
CAST(assumeNotNull(ifNull(dropoff_cdeligibil, ' ')) AS Enum8(' ' = 0, 'E' = 1, 'I' = 2)) AS dropoff_cdeligibil,
|
|
|
|
|
toFixedString(ifNull(dropoff_ntacode, '0000'), 4) AS dropoff_ntacode,
|
|
|
|
|
|
|
|
|
|
CAST(assumeNotNull(dropoff_ntaname) AS Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142, 'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village' = 147, '
|
|
|
|
|
|
|
|
|
|
toUInt16(ifNull(dropoff_puma, '0')) AS dropoff_puma
|
|
|
|
|
|
|
|
|
|
FROM trips
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
这需要3030秒,速度约为每秒428,000行。
|
2020-04-30 18:19:18 +00:00
|
|
|
|
要加快速度,可以使用`Log`引擎替换’MergeTree\`引擎来创建表。 在这种情况下,下载速度超过200秒。
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
这个表需要使用126GB的磁盘空间。
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2019-10-28 04:18:22 +00:00
|
|
|
|
SELECT formatReadableSize(sum(bytes)) FROM system.parts WHERE table = 'trips_mergetree' AND active
|
2018-10-17 08:19:33 +00:00
|
|
|
|
```
|
2020-03-20 18:20:59 +00:00
|
|
|
|
|
|
|
|
|
``` text
|
2018-10-17 08:19:33 +00:00
|
|
|
|
┌─formatReadableSize(sum(bytes))─┐
|
|
|
|
|
│ 126.18 GiB │
|
|
|
|
|
└────────────────────────────────┘
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
除此之外,你还可以在MergeTree上运行OPTIMIZE查询来进行优化。但这不是必须的,因为即使在没有进行优化的情况下它的表现依然是很好的。
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
## 下载预处理好的分区数据 {#xia-zai-yu-chu-li-hao-de-fen-qu-shu-ju}
|
2019-10-28 04:18:22 +00:00
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` bash
|
2019-10-28 04:18:22 +00:00
|
|
|
|
$ curl -O https://clickhouse-datasets.s3.yandex.net/trips_mergetree/partitions/trips_mergetree.tar
|
|
|
|
|
$ tar xvf trips_mergetree.tar -C /var/lib/clickhouse # path to ClickHouse data directory
|
|
|
|
|
$ # check permissions of unpacked data, fix if required
|
|
|
|
|
$ sudo service clickhouse-server restart
|
|
|
|
|
$ clickhouse-client --query "select count(*) from datasets.trips_mergetree"
|
|
|
|
|
```
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
!!! info "信息"
|
2020-03-20 18:20:59 +00:00
|
|
|
|
如果要运行下面的SQL查询,必须使用完整的表名,
|
|
|
|
|
`datasets.trips_mergetree`。
|
2019-10-28 04:18:22 +00:00
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
## 单台服务器运行结果 {#dan-tai-fu-wu-qi-yun-xing-jie-guo}
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
Q1:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
SELECT cab_type, count(*) FROM trips_mergetree GROUP BY cab_type
|
|
|
|
|
```
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
0.490秒
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
Q2:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
SELECT passenger_count, avg(total_amount) FROM trips_mergetree GROUP BY passenger_count
|
|
|
|
|
```
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
1.224秒
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
Q3:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
SELECT passenger_count, toYear(pickup_date) AS year, count(*) FROM trips_mergetree GROUP BY passenger_count, year
|
|
|
|
|
```
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
2.104秒
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
Q4:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
SELECT passenger_count, toYear(pickup_date) AS year, round(trip_distance) AS distance, count(*)
|
|
|
|
|
FROM trips_mergetree
|
|
|
|
|
GROUP BY passenger_count, year, distance
|
|
|
|
|
ORDER BY year, count(*) DESC
|
|
|
|
|
```
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
3.593秒
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
我们使用的是如下配置的服务器:
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
两个英特尔(R)至强(R)CPU E5-2650v2@2.60GHz,总共有16个物理内核,128GiB RAM,硬件RAID-5上的8X6TB HD
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
执行时间是取三次运行中最好的值,但是从第二次查询开始,查询就讲从文件系统的缓存中读取数据。同时在每次读取和处理后不在进行缓存。
|
|
|
|
|
|
|
|
|
|
在三台服务器中创建表结构:
|
|
|
|
|
|
|
|
|
|
在每台服务器中运行:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-12-25 15:25:43 +00:00
|
|
|
|
CREATE TABLE default.trips_mergetree_third ( trip_id UInt32, vendor_id Enum8('1' = 1, '2' = 2, 'CMT' = 3, 'VTS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11, 'B02617' = 12, 'B02682' = 13, 'B02764' = 14), pickup_date Date, pickup_datetime DateTime, dropoff_date Date, dropoff_datetime DateTime, store_and_fwd_flag UInt8, rate_code_id UInt8, pickup_longitude Float64, pickup_latitude Float64, dropoff_longitude Float64, dropoff_latitude Float64, passenger_count UInt8, trip_distance Float64, fare_amount Float32, extra Float32, mta_tax Float32, tip_amount Float32, tolls_amount Float32, ehail_fee Float32, improvement_surcharge Float32, total_amount Float32, payment_type_ Enum8('UNK' = 0, 'CSH' = 1, 'CRE' = 2, 'NOC' = 3, 'DIS' = 4), trip_type UInt8, pickup FixedString(25), dropoff FixedString(25), cab_type Enum8('yellow' = 1, 'green' = 2, 'uber' = 3), pickup_nyct2010_gid UInt8, pickup_ctlabel Float32, pickup_borocode UInt8, pickup_boroname Enum8('' = 0, 'Manhattan' = 1, 'Bronx' = 2, 'Brooklyn' = 3, 'Queens' = 4, 'Staten Island' = 5), pickup_ct2010 FixedString(6), pickup_boroct2010 FixedString(7), pickup_cdeligibil Enum8(' ' = 0, 'E' = 1, 'I' = 2), pickup_ntacode FixedString(4), pickup_ntaname Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' =
|
2018-10-17 08:19:33 +00:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
在之前的服务器中运行:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
CREATE TABLE trips_mergetree_x3 AS trips_mergetree_third ENGINE = Distributed(perftest, default, trips_mergetree_third, rand())
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
运行如下查询重新分布数据:
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
``` sql
|
2018-10-17 08:19:33 +00:00
|
|
|
|
INSERT INTO trips_mergetree_x3 SELECT * FROM trips_mergetree
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
这个查询需要运行2454秒。
|
|
|
|
|
|
|
|
|
|
在三台服务器集群中运行的结果:
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
Q1:0.212秒.
|
|
|
|
|
Q2:0.438秒。
|
|
|
|
|
Q3:0.733秒。
|
|
|
|
|
Q4:1.241秒.
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
不出意料,查询是线性扩展的。
|
|
|
|
|
|
|
|
|
|
我们同时在140台服务器的集群中运行的结果:
|
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
Q1:0.028秒。
|
|
|
|
|
Q2:0.043秒。
|
|
|
|
|
Q3:0.051秒。
|
|
|
|
|
Q4:0.072秒。
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
|
|
|
|
在这种情况下,查询处理时间首先由网络延迟确定。
|
|
|
|
|
我们使用位于芬兰的Yandex数据中心中的客户端去位于俄罗斯的集群上运行查询,这增加了大约20毫秒的延迟。
|
|
|
|
|
|
2020-03-20 18:20:59 +00:00
|
|
|
|
## 总结 {#zong-jie}
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
| 服务器 | Q1 | Q2 | Q3 | Q4 |
|
|
|
|
|
|--------|-------|-------|-------|-------|
|
|
|
|
|
| 1 | 0.490 | 1.224 | 2.104 | 3.593 |
|
|
|
|
|
| 3 | 0.212 | 0.438 | 0.733 | 1.241 |
|
|
|
|
|
| 140 | 0.028 | 0.043 | 0.051 | 0.072 |
|
2018-10-17 08:19:33 +00:00
|
|
|
|
|
2020-04-08 14:22:25 +00:00
|
|
|
|
[原始文章](https://clickhouse.tech/docs/en/getting_started/example_datasets/nyc_taxi/) <!--hide-->
|