ClickHouse/docs/en/engines/table-engines/integrations/hdfs.md

211 lines
9.9 KiB
Markdown
Raw Normal View History

2020-04-03 13:23:32 +00:00
---
2021-02-27 00:01:02 +00:00
toc_priority: 6
2020-04-03 13:23:32 +00:00
toc_title: HDFS
---
# HDFS {#table_engines-hdfs}
2019-12-18 09:46:42 +00:00
This engine provides integration with [Apache Hadoop](https://en.wikipedia.org/wiki/Apache_Hadoop) ecosystem by allowing to manage data on [HDFS](https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html)via ClickHouse. This engine is similar
to the [File](../../../engines/table-engines/special/file.md#table_engines-file) and [URL](../../../engines/table-engines/special/url.md#table_engines-url) engines, but provides Hadoop-specific features.
2020-03-20 10:10:48 +00:00
## Usage {#usage}
2020-03-20 10:10:48 +00:00
``` sql
ENGINE = HDFS(URI, format)
```
2020-03-20 10:10:48 +00:00
2019-09-04 19:55:56 +00:00
The `URI` parameter is the whole file URI in HDFS.
The `format` parameter specifies one of the available file formats. To perform
`SELECT` queries, the format must be supported for input, and to perform
2020-03-20 10:10:48 +00:00
`INSERT` queries for output. The available formats are listed in the
2020-04-03 13:23:32 +00:00
[Formats](../../../interfaces/formats.md#formats) section.
2019-09-20 11:26:00 +00:00
The path part of `URI` may contain globs. In this case the table would be readonly.
**Example:**
**1.** Set up the `hdfs_engine_table` table:
2020-03-20 10:10:48 +00:00
``` sql
CREATE TABLE hdfs_engine_table (name String, value UInt32) ENGINE=HDFS('hdfs://hdfs1:9000/other_storage', 'TSV')
```
2019-09-04 19:55:56 +00:00
**2.** Fill file:
2020-03-20 10:10:48 +00:00
``` sql
2019-09-04 19:55:56 +00:00
INSERT INTO hdfs_engine_table VALUES ('one', 1), ('two', 2), ('three', 3)
```
**3.** Query the data:
2020-03-20 10:10:48 +00:00
``` sql
SELECT * FROM hdfs_engine_table LIMIT 2
```
2020-03-20 10:10:48 +00:00
``` text
┌─name─┬─value─┐
│ one │ 1 │
│ two │ 2 │
└──────┴───────┘
```
2020-03-20 10:10:48 +00:00
## Implementation Details {#implementation-details}
- Reads and writes can be parallel
- Not supported:
- `ALTER` and `SELECT...SAMPLE` operations.
- Indexes.
- Replication.
2019-09-20 11:26:00 +00:00
**Globs in path**
Multiple path components can have globs. For being processed file should exists and matches to the whole path pattern. Listing of files determines during `SELECT` (not at `CREATE` moment).
- `*` — Substitutes any number of any characters except `/` including empty string.
- `?` — Substitutes any single character.
- `{some_string,another_string,yet_another_one}` — Substitutes any of strings `'some_string', 'another_string', 'yet_another_one'`.
- `{N..M}` — Substitutes any number in range from N to M including both borders.
2019-09-20 11:26:00 +00:00
Constructions with `{}` are similar to the [remote](../../../sql-reference/table-functions/remote.md) table function.
2019-09-20 11:26:00 +00:00
**Example**
2020-03-20 10:10:48 +00:00
1. Suppose we have several files in TSV format with the following URIs on HDFS:
2020-10-13 17:23:29 +00:00
- hdfs://hdfs1:9000/some_dir/some_file_1
- hdfs://hdfs1:9000/some_dir/some_file_2
- hdfs://hdfs1:9000/some_dir/some_file_3
- hdfs://hdfs1:9000/another_dir/some_file_1
- hdfs://hdfs1:9000/another_dir/some_file_2
- hdfs://hdfs1:9000/another_dir/some_file_3
2019-09-20 11:26:00 +00:00
2020-03-20 10:10:48 +00:00
1. There are several ways to make a table consisting of all six files:
2019-09-20 11:26:00 +00:00
2020-03-20 10:10:48 +00:00
<!-- -->
2019-09-20 11:26:00 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2019-09-20 11:26:00 +00:00
CREATE TABLE table_with_range (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_{1..3}', 'TSV')
```
Another way:
2020-03-20 10:10:48 +00:00
``` sql
2019-09-20 11:26:00 +00:00
CREATE TABLE table_with_question_mark (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_?', 'TSV')
```
Table consists of all the files in both directories (all files should satisfy format and schema described in query):
2020-03-20 10:10:48 +00:00
``` sql
2019-09-20 11:26:00 +00:00
CREATE TABLE table_with_asterisk (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/*', 'TSV')
```
2020-03-20 10:10:48 +00:00
!!! warning "Warning"
2019-09-20 11:26:00 +00:00
If the listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?`.
**Example**
2020-03-20 10:10:48 +00:00
Create table with files named `file000`, `file001`, … , `file999`:
2019-09-20 11:26:00 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2020-08-28 07:56:44 +00:00
CREATE TABLE big_table (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/big_dir/file{0..9}{0..9}{0..9}', 'CSV')
2019-09-20 11:26:00 +00:00
```
## Configuration {#configuration}
Similar to GraphiteMergeTree, the HDFS engine supports extended configuration using the ClickHouse config file. There are two configuration keys that you can use: global (`hdfs`) and user-level (`hdfs_*`). The global configuration is applied first, and then the user-level configuration is applied (if it exists).
``` xml
<!-- Global configuration options for HDFS engine type -->
<hdfs>
<hadoop_kerberos_keytab>/tmp/keytab/clickhouse.keytab</hadoop_kerberos_keytab>
<hadoop_kerberos_principal>clickuser@TEST.CLICKHOUSE.TECH</hadoop_kerberos_principal>
<hadoop_security_authentication>kerberos</hadoop_security_authentication>
</hdfs>
<!-- Configuration specific for user "root" -->
<hdfs_root>
<hadoop_kerberos_principal>root@TEST.CLICKHOUSE.TECH</hadoop_kerberos_principal>
</hdfs_root>
```
### List of possible configuration options with default values
#### Supported by libhdfs3
| **parameter** | **default value** |
| rpc\_client\_connect\_tcpnodelay | true |
| dfs\_client\_read\_shortcircuit | true |
| output\_replace-datanode-on-failure | true |
| input\_notretry-another-node | false |
| input\_localread\_mappedfile | true |
| dfs\_client\_use\_legacy\_blockreader\_local | false |
| rpc\_client\_ping\_interval | 10 * 1000 |
| rpc\_client\_connect\_timeout | 600 * 1000 |
| rpc\_client\_read\_timeout | 3600 * 1000 |
| rpc\_client\_write\_timeout | 3600 * 1000 |
| rpc\_client\_socekt\_linger\_timeout | -1 |
| rpc\_client\_connect\_retry | 10 |
| rpc\_client\_timeout | 3600 * 1000 |
| dfs\_default\_replica | 3 |
| input\_connect\_timeout | 600 * 1000 |
| input\_read\_timeout | 3600 * 1000 |
| input\_write\_timeout | 3600 * 1000 |
| input\_localread\_default\_buffersize | 1 * 1024 * 1024 |
| dfs\_prefetchsize | 10 |
| input\_read\_getblockinfo\_retry | 3 |
| input\_localread\_blockinfo\_cachesize | 1000 |
| input\_read\_max\_retry | 60 |
| output\_default\_chunksize | 512 |
| output\_default\_packetsize | 64 * 1024 |
| output\_default\_write\_retry | 10 |
| output\_connect\_timeout | 600 * 1000 |
| output\_read\_timeout | 3600 * 1000 |
| output\_write\_timeout | 3600 * 1000 |
| output\_close\_timeout | 3600 * 1000 |
| output\_packetpool\_size | 1024 |
| output\_heeartbeat\_interval | 10 * 1000 |
| dfs\_client\_failover\_max\_attempts | 15 |
| dfs\_client\_read\_shortcircuit\_streams\_cache\_size | 256 |
| dfs\_client\_socketcache\_expiryMsec | 3000 |
| dfs\_client\_socketcache\_capacity | 16 |
| dfs\_default\_blocksize | 64 * 1024 * 1024 |
| dfs\_default\_uri | "hdfs://localhost:9000" |
| hadoop\_security\_authentication | "simple" |
| hadoop\_security\_kerberos\_ticket\_cache\_path | "" |
| dfs\_client\_log\_severity | "INFO" |
| dfs\_domain\_socket\_path | "" |
[HDFS Configuration Reference ](https://hawq.apache.org/docs/userguide/2.3.0.0-incubating/reference/HDFSConfigurationParameterReference.html) might explain some parameters.
#### ClickHouse extras {#clickhouse-extras}
| **parameter** | **default value** |
|hadoop\_kerberos\_keytab | "" |
|hadoop\_kerberos\_principal | "" |
|hadoop\_kerberos\_kinit\_command | kinit |
#### Limitations {#limitations}
* hadoop\_security\_kerberos\_ticket\_cache\_path can be global only, not user specific
## Kerberos support {#kerberos-support}
If hadoop\_security\_authentication parameter has value 'kerberos', ClickHouse authentifies via Kerberos facility.
Parameters [here](#clickhouse-extras) and hadoop\_security\_kerberos\_ticket\_cache\_path may be of help.
Note that due to libhdfs3 limitations only old-fashioned approach is supported,
datanode communications are not secured by SASL (HADOOP\_SECURE\_DN\_USER is a reliable indicator of such
security approach). Use tests/integration/test\_storage\_kerberized\_hdfs/hdfs_configs/bootstrap.sh for reference.
2019-09-20 11:26:00 +00:00
If hadoop\_kerberos\_keytab, hadoop\_kerberos\_principal or hadoop\_kerberos\_kinit\_command is specified, kinit will be invoked. hadoop\_kerberos\_keytab and hadoop\_kerberos\_principal are mandatory in this case. kinit tool and krb5 configuration files are required.
2020-03-20 10:10:48 +00:00
## Virtual Columns {#virtual-columns}
- `_path` — Path to the file.
- `_file` — Name of the file.
**See Also**
- [Virtual columns](../../../engines/table-engines/index.md#table_engines-virtual_columns)
2020-01-30 10:34:55 +00:00
[Original article](https://clickhouse.tech/docs/en/operations/table_engines/hdfs/) <!--hide-->