ClickHouse/dbms/include/DB/AggregateFunctions/AggregateFunctionsStatistics.h

500 lines
13 KiB
C++
Raw Normal View History

#pragma once
#include <DB/IO/WriteHelpers.h>
#include <DB/IO/ReadHelpers.h>
#include <DB/DataTypes/DataTypesNumber.h>
#include <DB/AggregateFunctions/IUnaryAggregateFunction.h>
#include <DB/AggregateFunctions/IBinaryAggregateFunction.h>
#include <DB/Columns/ColumnsNumber.h>
#include <cmath>
namespace DB
{
namespace
{
/// This function returns true if both values are large and comparable.
2017-03-09 00:56:38 +00:00
/// It is used to calculate the mean value by merging two sources.
/// It means that if the sizes of both sources are large and comparable, then we must apply a special
/// formula guaranteeing more stability.
bool areComparable(UInt64 a, UInt64 b)
{
const Float64 sensitivity = 0.001;
const UInt64 threshold = 10000;
if ((a == 0) || (b == 0))
return false;
auto res = std::minmax(a, b);
return (((1 - static_cast<Float64>(res.first) / res.second) < sensitivity) && (res.first > threshold));
}
}
2017-03-09 00:56:38 +00:00
/** Statistical aggregate functions
* varSamp - sample variance
* stddevSamp - mean sample quadratic deviation
* varPop - variance
* stddevPop - standard deviation
* covarSamp - selective covariance
* covarPop - covariance
* corr - correlation
*/
2017-03-09 00:56:38 +00:00
/** Parallel and incremental algorithm for calculating variance.
* Source: "Updating formulae and a pairwise algorithm for computing sample variances"
* (Chan et al., Stanford University, 12.1979)
*/
template<typename T, typename Op>
class AggregateFunctionVarianceData
{
public:
AggregateFunctionVarianceData() = default;
void update(const IColumn & column, size_t row_num)
{
T received = static_cast<const ColumnVector<T> &>(column).getData()[row_num];
Float64 val = static_cast<Float64>(received);
Float64 delta = val - mean;
++count;
mean += delta / count;
m2 += delta * (val - mean);
}
void mergeWith(const AggregateFunctionVarianceData & source)
{
UInt64 total_count = count + source.count;
if (total_count == 0)
return;
Float64 factor = static_cast<Float64>(count * source.count) / total_count;
Float64 delta = mean - source.mean;
if (areComparable(count, source.count))
mean = (source.count * source.mean + count * mean) / total_count;
else
mean = source.mean + delta * (static_cast<Float64>(count) / total_count);
m2 += source.m2 + delta * delta * factor;
count = total_count;
}
void serialize(WriteBuffer & buf) const
{
writeVarUInt(count, buf);
writeBinary(mean, buf);
writeBinary(m2, buf);
}
void deserialize(ReadBuffer & buf)
{
readVarUInt(count, buf);
readBinary(mean, buf);
readBinary(m2, buf);
}
void publish(IColumn & to) const
{
static_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(m2, count));
}
private:
UInt64 count = 0;
Float64 mean = 0.0;
Float64 m2 = 0.0;
};
2017-03-09 00:56:38 +00:00
/** The main code for the implementation of varSamp, stddevSamp, varPop, stddevPop.
*/
template<typename T, typename Op>
class AggregateFunctionVariance final
: public IUnaryAggregateFunction<AggregateFunctionVarianceData<T, Op>,
AggregateFunctionVariance<T, Op> >
{
public:
String getName() const override { return Op::name; }
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeFloat64>();
}
void setArgument(const DataTypePtr & argument)
{
if (!argument->behavesAsNumber())
throw Exception("Illegal type " + argument->getName() + " of argument for aggregate function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
void addImpl(AggregateDataPtr place, const IColumn & column, size_t row_num, Arena *) const
{
this->data(place).update(column, row_num);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
this->data(place).mergeWith(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
2016-09-22 23:26:08 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
2016-03-12 04:01:03 +00:00
this->data(place).deserialize(buf);
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
this->data(place).publish(to);
}
};
namespace
{
2017-03-09 00:56:38 +00:00
/** Implementing the varSamp function.
*/
struct VarSampImpl
{
static constexpr auto name = "varSamp";
static inline Float64 apply(Float64 m2, UInt64 count)
{
if (count < 2)
return std::numeric_limits<Float64>::infinity();
else
return m2 / (count - 1);
}
};
2017-03-09 00:56:38 +00:00
/** Implementing the stddevSamp function.
*/
struct StdDevSampImpl
{
static constexpr auto name = "stddevSamp";
static inline Float64 apply(Float64 m2, UInt64 count)
{
return sqrt(VarSampImpl::apply(m2, count));
}
};
2017-03-09 00:56:38 +00:00
/** Implementing the varPop function.
*/
struct VarPopImpl
{
static constexpr auto name = "varPop";
static inline Float64 apply(Float64 m2, UInt64 count)
{
if (count == 0)
return std::numeric_limits<Float64>::infinity();
else if (count == 1)
return 0.0;
else
return m2 / count;
}
};
2017-03-09 00:56:38 +00:00
/** Implementing the stddevPop function.
*/
struct StdDevPopImpl
{
static constexpr auto name = "stddevPop";
static inline Float64 apply(Float64 m2, UInt64 count)
{
return sqrt(VarPopImpl::apply(m2, count));
}
};
}
2017-03-09 00:56:38 +00:00
/** If `compute_marginal_moments` flag is set this class provides the heir
* CovarianceData support of marginal moments for calculating the correlation.
*/
template<bool compute_marginal_moments>
class BaseCovarianceData
{
protected:
void incrementMarginalMoments(Float64 left_incr, Float64 right_incr) {}
void mergeWith(const BaseCovarianceData & source) {}
void serialize(WriteBuffer & buf) const {}
void deserialize(const ReadBuffer & buf) {}
};
template<>
class BaseCovarianceData<true>
{
protected:
void incrementMarginalMoments(Float64 left_incr, Float64 right_incr)
{
left_m2 += left_incr;
right_m2 += right_incr;
}
void mergeWith(const BaseCovarianceData & source)
{
left_m2 += source.left_m2;
right_m2 += source.right_m2;
}
void serialize(WriteBuffer & buf) const
{
writeBinary(left_m2, buf);
writeBinary(right_m2, buf);
}
void deserialize(ReadBuffer & buf)
{
readBinary(left_m2, buf);
readBinary(right_m2, buf);
}
protected:
Float64 left_m2 = 0.0;
Float64 right_m2 = 0.0;
};
2017-03-09 00:56:38 +00:00
/** Parallel and incremental algorithm for calculating covariance.
* Source: "Numerically Stable, Single-Pass, Parallel Statistics Algorithms"
* (J. Bennett et al., Sandia National Laboratories,
* 2009 IEEE International Conference on Cluster Computing)
*/
template<typename T, typename U, typename Op, bool compute_marginal_moments>
class CovarianceData : public BaseCovarianceData<compute_marginal_moments>
{
private:
using Base = BaseCovarianceData<compute_marginal_moments>;
public:
void update(const IColumn & column_left, const IColumn & column_right, size_t row_num)
{
T left_received = static_cast<const ColumnVector<T> &>(column_left).getData()[row_num];
Float64 left_val = static_cast<Float64>(left_received);
Float64 left_delta = left_val - left_mean;
U right_received = static_cast<const ColumnVector<U> &>(column_right).getData()[row_num];
Float64 right_val = static_cast<Float64>(right_received);
Float64 right_delta = right_val - right_mean;
Float64 old_right_mean = right_mean;
++count;
left_mean += left_delta / count;
right_mean += right_delta / count;
co_moment += (left_val - left_mean) * (right_val - old_right_mean);
2017-03-09 00:56:38 +00:00
/// Update the marginal moments, if any.
if (compute_marginal_moments)
{
Float64 left_incr = left_delta * (left_val - left_mean);
Float64 right_incr = right_delta * (right_val - right_mean);
Base::incrementMarginalMoments(left_incr, right_incr);
}
}
void mergeWith(const CovarianceData & source)
{
UInt64 total_count = count + source.count;
if (total_count == 0)
return;
Float64 factor = static_cast<Float64>(count * source.count) / total_count;
Float64 left_delta = left_mean - source.left_mean;
Float64 right_delta = right_mean - source.right_mean;
if (areComparable(count, source.count))
{
left_mean = (source.count * source.left_mean + count * left_mean) / total_count;
right_mean = (source.count * source.right_mean + count * right_mean) / total_count;
}
else
{
left_mean = source.left_mean + left_delta * (static_cast<Float64>(count) / total_count);
right_mean = source.right_mean + right_delta * (static_cast<Float64>(count) / total_count);
}
co_moment += source.co_moment + left_delta * right_delta * factor;
count = total_count;
2017-03-09 00:56:38 +00:00
/// Update the marginal moments, if any.
if (compute_marginal_moments)
{
Float64 left_incr = left_delta * left_delta * factor;
Float64 right_incr = right_delta * right_delta * factor;
Base::mergeWith(source);
Base::incrementMarginalMoments(left_incr, right_incr);
}
}
void serialize(WriteBuffer & buf) const
{
writeVarUInt(count, buf);
writeBinary(left_mean, buf);
writeBinary(right_mean, buf);
writeBinary(co_moment, buf);
Base::serialize(buf);
}
void deserialize(ReadBuffer & buf)
{
readVarUInt(count, buf);
readBinary(left_mean, buf);
readBinary(right_mean, buf);
readBinary(co_moment, buf);
Base::deserialize(buf);
}
template<bool compute = compute_marginal_moments>
void publish(IColumn & to, typename std::enable_if<compute>::type * = nullptr) const
{
static_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(co_moment, Base::left_m2, Base::right_m2, count));
}
template<bool compute = compute_marginal_moments>
void publish(IColumn & to, typename std::enable_if<!compute>::type * = nullptr) const
{
static_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(co_moment, count));
}
private:
UInt64 count = 0;
Float64 left_mean = 0.0;
Float64 right_mean = 0.0;
Float64 co_moment = 0.0;
};
template<typename T, typename U, typename Op, bool compute_marginal_moments = false>
class AggregateFunctionCovariance final
: public IBinaryAggregateFunction<
CovarianceData<T, U, Op, compute_marginal_moments>,
AggregateFunctionCovariance<T, U, Op, compute_marginal_moments> >
{
public:
String getName() const override { return Op::name; }
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeFloat64>();
}
void setArgumentsImpl(const DataTypes & arguments)
{
if (!arguments[0]->behavesAsNumber())
throw Exception("Illegal type " + arguments[0]->getName() + " of first argument to function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
if (!arguments[1]->behavesAsNumber())
throw Exception("Illegal type " + arguments[1]->getName() + " of second argument to function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
void addImpl(AggregateDataPtr place, const IColumn & column_left, const IColumn & column_right, size_t row_num, Arena *) const
{
this->data(place).update(column_left, column_right, row_num);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
this->data(place).mergeWith(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
2016-09-22 23:26:08 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
2016-03-12 04:01:03 +00:00
this->data(place).deserialize(buf);
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
this->data(place).publish(to);
}
};
namespace
{
2017-03-09 00:56:38 +00:00
/** Implementing the covarSamp function.
*/
struct CovarSampImpl
{
static constexpr auto name = "covarSamp";
static inline Float64 apply(Float64 co_moment, UInt64 count)
{
if (count < 2)
return std::numeric_limits<Float64>::infinity();
else
return co_moment / (count - 1);
}
};
2017-03-09 00:56:38 +00:00
/** Implementing the covarPop function.
*/
struct CovarPopImpl
{
static constexpr auto name = "covarPop";
static inline Float64 apply(Float64 co_moment, UInt64 count)
{
if (count == 0)
return std::numeric_limits<Float64>::infinity();
else if (count == 1)
return 0.0;
else
return co_moment / count;
}
};
2017-03-09 00:56:38 +00:00
/** `corr` function implementation.
*/
struct CorrImpl
{
static constexpr auto name = "corr";
static inline Float64 apply(Float64 co_moment, Float64 left_m2, Float64 right_m2, UInt64 count)
{
if (count < 2)
return std::numeric_limits<Float64>::infinity();
else
return co_moment / sqrt(left_m2 * right_m2);
}
};
}
template<typename T>
using AggregateFunctionVarSamp = AggregateFunctionVariance<T, VarSampImpl>;
template<typename T>
using AggregateFunctionStdDevSamp = AggregateFunctionVariance<T, StdDevSampImpl>;
template<typename T>
using AggregateFunctionVarPop = AggregateFunctionVariance<T, VarPopImpl>;
template<typename T>
using AggregateFunctionStdDevPop = AggregateFunctionVariance<T, StdDevPopImpl>;
template<typename T, typename U>
using AggregateFunctionCovarSamp = AggregateFunctionCovariance<T, U, CovarSampImpl>;
template<typename T, typename U>
using AggregateFunctionCovarPop = AggregateFunctionCovariance<T, U, CovarPopImpl>;
template<typename T, typename U>
using AggregateFunctionCorr = AggregateFunctionCovariance<T, U, CorrImpl, true>;
}