ClickHouse/dbms/include/DB/Dictionaries/ComplexKeyCacheDictionary.h

942 lines
32 KiB
C
Raw Normal View History

#pragma once
#include <DB/Dictionaries/IDictionary.h>
#include <DB/Dictionaries/IDictionarySource.h>
#include <DB/Dictionaries/DictionaryStructure.h>
#include <DB/Common/Arena.h>
#include <DB/Common/ArenaWithFreeLists.h>
#include <DB/Common/SmallObjectPool.h>
#include <DB/Common/HashTable/HashMap.h>
#include <DB/Columns/ColumnString.h>
#include <DB/Core/StringRef.h>
#include <ext/enumerate.hpp>
#include <ext/scope_guard.hpp>
#include <ext/bit_cast.hpp>
#include <ext/range.hpp>
#include <ext/map.hpp>
#include <Poco/RWLock.h>
#include <cmath>
#include <atomic>
#include <chrono>
#include <vector>
#include <map>
#include <tuple>
namespace DB
{
class ComplexKeyCacheDictionary final : public IDictionaryBase
{
public:
ComplexKeyCacheDictionary(const std::string & name, const DictionaryStructure & dict_struct,
DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime,
const std::size_t size)
: name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime),
size{round_up_to_power_of_two(size)}
{
if (!this->source_ptr->supportsSelectiveLoad())
throw Exception{
name + ": source cannot be used with ComplexKeyCacheDictionary",
ErrorCodes::UNSUPPORTED_METHOD
};
createAttributes();
}
ComplexKeyCacheDictionary(const ComplexKeyCacheDictionary & other)
: ComplexKeyCacheDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.size}
{}
std::string getKeyDescription() const { return key_description; };
std::exception_ptr getCreationException() const override { return {}; }
std::string getName() const override { return name; }
std::string getTypeName() const override { return "ComplexKeyCache"; }
std::size_t getBytesAllocated() const override
{
return bytes_allocated + (key_size_is_fixed ? fixed_size_keys_pool->size() : keys_pool->size()) +
(string_arena ? string_arena->size() : 0);
}
std::size_t getQueryCount() const override { return query_count.load(std::memory_order_relaxed); }
double getHitRate() const override
{
return static_cast<double>(hit_count.load(std::memory_order_acquire)) /
query_count.load(std::memory_order_relaxed);
}
std::size_t getElementCount() const override { return element_count.load(std::memory_order_relaxed); }
double getLoadFactor() const override
{
return static_cast<double>(element_count.load(std::memory_order_relaxed)) / size;
}
bool isCached() const override { return true; }
DictionaryPtr clone() const override { return std::make_unique<ComplexKeyCacheDictionary>(*this); }
const IDictionarySource * getSource() const override { return source_ptr.get(); }
const DictionaryLifetime & getLifetime() const override { return dict_lifetime; }
const DictionaryStructure & getStructure() const override { return dict_struct; }
std::chrono::time_point<std::chrono::system_clock> getCreationTime() const override
{
return creation_time;
}
bool isInjective(const std::string & attribute_name) const override
{
return dict_struct.attributes[&getAttribute(attribute_name) - attributes.data()].injective;
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\
PODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
const auto null_value = std::get<TYPE>(attribute.null_values);\
\
getItems<TYPE>(attribute, key_columns, out, [&] (const std::size_t) { return null_value; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,
ColumnString * out) const
{
dict_struct.validateKeyTypes(key_types);
auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
const auto null_value = StringRef{std::get<String>(attribute.null_values)};
getItems(attribute, key_columns, out, [&] (const std::size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\
const PODArray<TYPE> & def, PODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
getItems<TYPE>(attribute, key_columns, out, [&] (const std::size_t row) { return def[row]; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,
const ColumnString * const def, ColumnString * const out) const
{
dict_struct.validateKeyTypes(key_types);
auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
getItems(attribute, key_columns, out, [&] (const std::size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE)\
void get##TYPE(\
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\
const TYPE def, PODArray<TYPE> & out) const\
{\
dict_struct.validateKeyTypes(key_types);\
\
auto & attribute = getAttribute(attribute_name);\
if (attribute.type != AttributeUnderlyingType::TYPE)\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH\
};\
\
getItems<TYPE>(attribute, key_columns, out, [&] (const std::size_t) { return def; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void getString(
const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,
const String & def, ColumnString * const out) const
{
dict_struct.validateKeyTypes(key_types);
auto & attribute = getAttribute(attribute_name);
if (attribute.type != AttributeUnderlyingType::String)
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH
};
getItems(attribute, key_columns, out, [&] (const std::size_t) { return StringRef{def}; });
}
void has(const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, PODArray<UInt8> & out) const
{
dict_struct.validateKeyTypes(key_types);
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<std::size_t>> outdated_keys;
const auto rows = key_columns.front()->size();
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
PODArray<StringRef> keys_array(rows);
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows))
{
const auto key = placeKeysInPool(row, key_columns, keys, temporary_keys_pool);
keys_array[row] = key;
const auto hash = StringRefHash{}(key);
const auto cell_idx = hash & (size - 1);
const auto & cell = cells[cell_idx];
/** cell should be updated if either:
* 1. keys (or hash) do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (cell.hash != hash || cell.key != key || cell.expiresAt() < now)
outdated_keys[key].push_back(row);
else
out[row] = !cell.isDefault();
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_keys.size(), std::memory_order_release);
if (outdated_keys.empty())
return;
std::vector<std::size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows),
[] (auto & pair) { return pair.second.front(); });
/// request new values
update(key_columns, keys_array, required_rows, [&] (const auto key, const auto) {
for (const auto out_idx : outdated_keys[key])
out[out_idx] = true;
}, [&] (const auto key, const auto) {
for (const auto out_idx : outdated_keys[key])
out[out_idx] = false;
});
}
private:
template <typename Value> using MapType = HashMapWithSavedHash<StringRef, Value, StringRefHash>;
template <typename Value> using ContainerType = Value[];
template <typename Value> using ContainerPtrType = std::unique_ptr<ContainerType<Value>>;
struct cell_metadata_t final
{
using time_point_t = std::chrono::system_clock::time_point;
using time_point_rep_t = time_point_t::rep;
using time_point_urep_t = std::make_unsigned_t<time_point_rep_t>;
static constexpr std::uint64_t EXPIRES_AT_MASK = std::numeric_limits<time_point_rep_t>::max();
static constexpr std::uint64_t IS_DEFAULT_MASK = ~EXPIRES_AT_MASK;
StringRef key;
decltype(StringRefHash{}(key)) hash;
/// Stores both expiration time and `is_default` flag in the most significant bit
time_point_urep_t data;
/// Sets expiration time, resets `is_default` flag to false
time_point_t expiresAt() const { return ext::safe_bit_cast<time_point_t>(data & EXPIRES_AT_MASK); }
void setExpiresAt(const time_point_t & t) { data = ext::safe_bit_cast<time_point_urep_t>(t); }
bool isDefault() const { return (data & IS_DEFAULT_MASK) == IS_DEFAULT_MASK; }
void setDefault() { data |= IS_DEFAULT_MASK; }
};
struct attribute_t final
{
AttributeUnderlyingType type;
std::tuple<
UInt8, UInt16, UInt32, UInt64,
Int8, Int16, Int32, Int64,
Float32, Float64,
String> null_values;
std::tuple<
ContainerPtrType<UInt8>, ContainerPtrType<UInt16>, ContainerPtrType<UInt32>, ContainerPtrType<UInt64>,
ContainerPtrType<Int8>, ContainerPtrType<Int16>, ContainerPtrType<Int32>, ContainerPtrType<Int64>,
ContainerPtrType<Float32>, ContainerPtrType<Float64>,
ContainerPtrType<StringRef>> arrays;
};
void createAttributes()
{
const auto size = dict_struct.attributes.size();
attributes.reserve(size);
bytes_allocated += size * sizeof(cell_metadata_t);
bytes_allocated += size * sizeof(attributes.front());
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
throw Exception{
name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(),
ErrorCodes::TYPE_MISMATCH
};
}
}
attribute_t createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
attribute_t attr{type};
switch (type)
{
case AttributeUnderlyingType::UInt8:
std::get<UInt8>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt8>>(attr.arrays) = std::make_unique<ContainerType<UInt8>>(size);
bytes_allocated += size * sizeof(UInt8);
break;
case AttributeUnderlyingType::UInt16:
std::get<UInt16>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt16>>(attr.arrays) = std::make_unique<ContainerType<UInt16>>(size);
bytes_allocated += size * sizeof(UInt16);
break;
case AttributeUnderlyingType::UInt32:
std::get<UInt32>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt32>>(attr.arrays) = std::make_unique<ContainerType<UInt32>>(size);
bytes_allocated += size * sizeof(UInt32);
break;
case AttributeUnderlyingType::UInt64:
std::get<UInt64>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt64>>(attr.arrays) = std::make_unique<ContainerType<UInt64>>(size);
bytes_allocated += size * sizeof(UInt64);
break;
case AttributeUnderlyingType::Int8:
std::get<Int8>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int8>>(attr.arrays) = std::make_unique<ContainerType<Int8>>(size);
bytes_allocated += size * sizeof(Int8);
break;
case AttributeUnderlyingType::Int16:
std::get<Int16>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int16>>(attr.arrays) = std::make_unique<ContainerType<Int16>>(size);
bytes_allocated += size * sizeof(Int16);
break;
case AttributeUnderlyingType::Int32:
std::get<Int32>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int32>>(attr.arrays) = std::make_unique<ContainerType<Int32>>(size);
bytes_allocated += size * sizeof(Int32);
break;
case AttributeUnderlyingType::Int64:
std::get<Int64>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int64>>(attr.arrays) = std::make_unique<ContainerType<Int64>>(size);
bytes_allocated += size * sizeof(Int64);
break;
case AttributeUnderlyingType::Float32:
std::get<Float32>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float32>>(attr.arrays) = std::make_unique<ContainerType<Float32>>(size);
bytes_allocated += size * sizeof(Float32);
break;
case AttributeUnderlyingType::Float64:
std::get<Float64>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float64>>(attr.arrays) = std::make_unique<ContainerType<Float64>>(size);
bytes_allocated += size * sizeof(Float64);
break;
case AttributeUnderlyingType::String:
std::get<String>(attr.null_values) = null_value.get<String>();
std::get<ContainerPtrType<StringRef>>(attr.arrays) = std::make_unique<ContainerType<StringRef>>(size);
bytes_allocated += size * sizeof(StringRef);
if (!string_arena)
string_arena = std::make_unique<ArenaWithFreeLists>();
break;
}
return attr;
}
template <typename T, typename DefaultGetter>
void getItems(
attribute_t & attribute, const ConstColumnPlainPtrs & key_columns, PODArray<T> & out,
DefaultGetter && get_default) const
{
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<std::size_t>> outdated_keys;
auto & attribute_array = std::get<ContainerPtrType<T>>(attribute.arrays);
const auto rows = key_columns.front()->size();
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
PODArray<StringRef> keys_array(rows);
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows))
{
const auto key = placeKeysInPool(row, key_columns, keys, temporary_keys_pool);
keys_array[row] = key;
const auto hash = StringRefHash{}(key);
const auto cell_idx = hash & (size - 1);
const auto & cell = cells[cell_idx];
/** cell should be updated if either:
* 1. keys (or hash) do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (cell.hash != hash || cell.key != key || cell.expiresAt() < now)
outdated_keys[key].push_back(row);
else
out[row] = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_keys.size(), std::memory_order_release);
if (outdated_keys.empty())
return;
std::vector<std::size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows),
[] (auto & pair) { return pair.second.front(); });
/// request new values
update(key_columns, keys_array, required_rows, [&] (const auto key, const auto cell_idx) {
for (const auto row : outdated_keys[key])
out[row] = attribute_array[cell_idx];
}, [&] (const auto key, const auto cell_idx) {
for (const auto row : outdated_keys[key])
out[row] = get_default(row);
});
}
template <typename DefaultGetter>
void getItems(
attribute_t & attribute, const ConstColumnPlainPtrs & key_columns, ColumnString * out,
DefaultGetter && get_default) const
{
const auto rows = key_columns.front()->size();
/// save on some allocations
out->getOffsets().reserve(rows);
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
auto & attribute_array = std::get<ContainerPtrType<StringRef>>(attribute.arrays);
auto found_outdated_values = false;
/// perform optimistic version, fallback to pessimistic if failed
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, discard on fail
for (const auto row : ext::range(0, rows))
{
const auto key = placeKeysInPool(row, key_columns, keys, temporary_keys_pool);
SCOPE_EXIT(temporary_keys_pool.rollback(key.size));
const auto hash = StringRefHash{}(key);
const auto cell_idx = hash & (size - 1);
const auto & cell = cells[cell_idx];
if (cell.hash != hash || cell.key != key || cell.expiresAt() < now)
{
found_outdated_values = true;
break;
}
else
{
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
out->insertData(string_ref.data, string_ref.size);
}
}
}
/// optimistic code completed successfully
if (!found_outdated_values)
{
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows, std::memory_order_release);
return;
}
/// now onto the pessimistic one, discard possible partial results from the optimistic path
out->getChars().resize_assume_reserved(0);
out->getOffsets().resize_assume_reserved(0);
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<std::size_t>> outdated_keys;
/// we are going to store every string separately
MapType<String> map;
PODArray<StringRef> keys_array(rows);
std::size_t total_length = 0;
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
for (const auto row : ext::range(0, rows))
{
const auto key = placeKeysInPool(row, key_columns, keys, temporary_keys_pool);
keys_array[row] = key;
const auto hash = StringRefHash{}(key);
const auto cell_idx = hash & (size - 1);
const auto & cell = cells[cell_idx];
if (cell.hash != hash || cell.key != key || cell.expiresAt() < now)
outdated_keys[key].push_back(row);
else
{
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
if (!cell.isDefault())
map[key] = String{string_ref};
total_length += string_ref.size + 1;
}
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_keys.size(), std::memory_order_release);
/// request new values
if (!outdated_keys.empty())
{
std::vector<std::size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows),
[] (auto & pair) { return pair.second.front(); });
update(key_columns, keys_array, required_rows, [&] (const auto key, const auto cell_idx) {
const auto attribute_value = attribute_array[cell_idx];
map[key] = String{attribute_value};
total_length += (attribute_value.size + 1) * outdated_keys[key].size();
}, [&] (const auto key, const auto cell_idx) {
for (const auto row : outdated_keys[key])
total_length += get_default(row).size + 1;
});
}
out->getChars().reserve(total_length);
for (const auto row : ext::range(0, ext::size(keys_array)))
{
const auto key = keys_array[row];
const auto it = map.find(key);
const auto string_ref = it != std::end(map) ? StringRef{it->second} : get_default(row);
out->insertData(string_ref.data, string_ref.size);
}
}
template <typename PresentKeyHandler, typename AbsentKeyHandler>
void update(
const ConstColumnPlainPtrs & in_key_columns, const PODArray<StringRef> & in_keys,
const std::vector<std::size_t> & in_requested_rows, PresentKeyHandler && on_cell_updated,
AbsentKeyHandler && on_key_not_found) const
{
auto stream = source_ptr->loadKeys(in_key_columns, in_requested_rows);
stream->readPrefix();
MapType<bool> remaining_keys{in_requested_rows.size()};
for (const auto row : in_requested_rows)
remaining_keys.insert({ in_keys[row], false });
std::uniform_int_distribution<std::uint64_t> distribution{
dict_lifetime.min_sec,
dict_lifetime.max_sec
};
const Poco::ScopedWriteRWLock write_lock{rw_lock};
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
const auto attributes_size = attributes.size();
while (const auto block = stream->read())
{
/// cache column pointers
const auto key_columns = ext::map<ConstColumnPlainPtrs>(ext::range(0, keys_size),
[&] (const std::size_t attribute_idx) {
return block.getByPosition(attribute_idx).column.get();
});
const auto attribute_columns = ext::map<ConstColumnPlainPtrs>(ext::range(0, attributes_size),
[&] (const std::size_t attribute_idx) {
return block.getByPosition(keys_size + attribute_idx).column.get();
});
const auto rows = block.rowsInFirstColumn();
for (const auto row : ext::range(0, rows))
{
auto key = allocKey(row, key_columns, keys);
const auto hash = StringRefHash{}(key);
const auto cell_idx = hash & (size - 1);
auto & cell = cells[cell_idx];
for (const auto attribute_idx : ext::range(0, attributes.size()))
{
const auto & attribute_column = *attribute_columns[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, cell_idx, attribute_column[row]);
}
/// if cell id is zero and zero does not map to this cell, then the cell is unused
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
/// handle memory allocated for old key
if (key == cell.key)
{
freeKey(key);
key = cell.key;
}
else
{
/// new key is different from the old one
if (cell.key.data)
freeKey(cell.key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
/// inform caller
on_cell_updated(key, cell_idx);
/// mark corresponding id as found
remaining_keys[key] = true;
}
}
stream->readSuffix();
/// Check which ids have not been found and require setting null_value
for (const auto key_found_pair : remaining_keys)
{
if (key_found_pair.second)
continue;
auto key = key_found_pair.first;
const auto hash = StringRefHash{}(key);
const auto cell_idx = hash & (size - 1);
auto & cell = cells[cell_idx];
/// Set null_value for each attribute
for (auto & attribute : attributes)
setDefaultAttributeValue(attribute, cell_idx);
/// Check if cell had not been occupied before and increment element counter if it hadn't
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
if (key == cell.key)
key = cell.key;
else
{
if (cell.key.data)
freeKey(cell.key);
/// copy key from temporary pool
key = copyKey(key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
cell.setDefault();
/// inform caller that the cell has not been found
on_key_not_found(key, cell_idx);
}
}
std::uint64_t getCellIdx(const StringRef key) const
{
const auto hash = StringRefHash{}(key);
const auto idx = hash & (size - 1);
return idx;
}
void setDefaultAttributeValue(attribute_t & attribute, const std::size_t idx) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = std::get<UInt8>(attribute.null_values); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = std::get<UInt16>(attribute.null_values); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = std::get<UInt32>(attribute.null_values); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = std::get<UInt64>(attribute.null_values); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = std::get<Int8>(attribute.null_values); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = std::get<Int16>(attribute.null_values); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = std::get<Int32>(attribute.null_values); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = std::get<Int64>(attribute.null_values); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = std::get<Float32>(attribute.null_values); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = std::get<Float64>(attribute.null_values); break;
case AttributeUnderlyingType::String:
{
const auto & null_value_ref = std::get<String>(attribute.null_values);
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
if (string_ref.data != null_value_ref.data())
{
if (string_ref.data)
string_arena->free(string_ref.data, string_ref.size);
string_ref = StringRef{null_value_ref};
}
break;
}
}
}
void setAttributeValue(attribute_t & attribute, const std::size_t idx, const Field & value) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::String:
{
const auto & string = value.get<String>();
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
const auto & null_value_ref = std::get<String>(attribute.null_values);
/// free memory unless it points to a null_value
if (string_ref.data && string_ref.data != null_value_ref.data())
string_arena->free(string_ref.data, string_ref.size);
const auto size = string.size();
if (size != 0)
{
auto string_ptr = string_arena->alloc(size + 1);
std::copy(string.data(), string.data() + size + 1, string_ptr);
string_ref = StringRef{string_ptr, size};
}
else
string_ref = {};
break;
}
}
}
attribute_t & getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{
name + ": no such attribute '" + attribute_name + "'",
ErrorCodes::BAD_ARGUMENTS
};
return attributes[it->second];
}
StringRef allocKey(const std::size_t row, const ConstColumnPlainPtrs & key_columns, StringRefs & keys) const
{
if (key_size_is_fixed)
return placeKeysInFixedSizePool(row, key_columns);
return placeKeysInPool(row, key_columns, keys, *keys_pool);
}
void freeKey(const StringRef key) const
{
if (key_size_is_fixed)
fixed_size_keys_pool->free(key.data);
else
keys_pool->free(key.data, key.size);
}
static std::size_t round_up_to_power_of_two(std::size_t n)
{
--n;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n |= n >> 32;
++n;
return n;
}
static std::uint64_t getSeed()
{
timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_nsec ^ getpid();
}
template <typename Arena>
static StringRef placeKeysInPool(
const std::size_t row, const ConstColumnPlainPtrs & key_columns, StringRefs & keys, Arena & pool)
{
const auto keys_size = key_columns.size();
size_t sum_keys_size{};
for (const auto i : ext::range(0, keys_size))
{
keys[i] = key_columns[i]->getDataAtWithTerminatingZero(row);
sum_keys_size += keys[i].size;
}
const auto res = pool.alloc(sum_keys_size);
auto place = res;
for (size_t j = 0; j < keys_size; ++j)
{
memcpy(place, keys[j].data, keys[j].size);
place += keys[j].size;
}
return { res, sum_keys_size };
}
StringRef placeKeysInFixedSizePool(
const std::size_t row, const ConstColumnPlainPtrs & key_columns) const
{
const auto res = fixed_size_keys_pool->alloc();
auto place = res;
for (const auto & key_column : key_columns)
{
const auto key = key_column->getDataAt(row);
memcpy(place, key.data, key.size);
place += key.size;
}
return { res, key_size };
}
StringRef copyKey(const StringRef key) const
{
const auto res = key_size_is_fixed ? fixed_size_keys_pool->alloc() : keys_pool->alloc(key.size);
memcpy(res, key.data, key.size);
return { res, key.size };
}
const std::string name;
const DictionaryStructure dict_struct;
const DictionarySourcePtr source_ptr;
const DictionaryLifetime dict_lifetime;
const std::string key_description{dict_struct.getKeyDescription()};
mutable Poco::RWLock rw_lock;
const std::size_t size;
const std::uint64_t zero_cell_idx{getCellIdx(StringRef{})};
std::map<std::string, std::size_t> attribute_index_by_name;
mutable std::vector<attribute_t> attributes;
mutable std::vector<cell_metadata_t> cells{size};
const bool key_size_is_fixed{dict_struct.isKeySizeFixed()};
std::size_t key_size{key_size_is_fixed ? dict_struct.getKeySize() : 0};
std::unique_ptr<ArenaWithFreeLists> keys_pool = key_size_is_fixed ? nullptr :
std::make_unique<ArenaWithFreeLists>();
std::unique_ptr<SmallObjectPool> fixed_size_keys_pool = key_size_is_fixed ?
std::make_unique<SmallObjectPool>(key_size) : nullptr;
std::unique_ptr<ArenaWithFreeLists> string_arena;
mutable std::mt19937_64 rnd_engine{getSeed()};
mutable std::size_t bytes_allocated = 0;
mutable std::atomic<std::size_t> element_count{0};
mutable std::atomic<std::size_t> hit_count{0};
mutable std::atomic<std::size_t> query_count{0};
const std::chrono::time_point<std::chrono::system_clock> creation_time = std::chrono::system_clock::now();
};
}