All the clauses are optional, except for the required list of expressions immediately after SELECT.
The clauses below are described in almost the same order as in the query execution conveyor.
If the query omits the `DISTINCT`, `GROUP BY` and `ORDER BY` clauses and the `IN` and `JOIN` subqueries, the query will be completely stream processed, using O(1) amount of RAM.
Otherwise, the query might consume a lot of RAM if the appropriate restrictions are not specified: `max_memory_usage`, `max_rows_to_group_by`, `max_rows_to_sort`, `max_rows_in_distinct`, `max_bytes_in_distinct`, `max_rows_in_set`, `max_bytes_in_set`, `max_rows_in_join`, `max_bytes_in_join`, `max_bytes_before_external_sort`, `max_bytes_before_external_group_by`. For more information, see the section "Settings". It is possible to use external sorting (saving temporary tables to a disk) and external aggregation. `The system does not have "merge join"`.
This section provides support for Common Table Expressions ([CTE](https://en.wikipedia.org/wiki/Hierarchical_and_recursive_queries_in_SQL)), with some limitations:
1. Recursive queries are not supported
2. When subquery is used inside WITH section, it's result should be scalar with exactly one row
3. Expression's results are not available in subqueries
Results of WITH clause expressions can be used inside SELECT clause.
Example 1: Using constant expression as "variable"
```
WITH '2019-08-01 15:23:00' as ts_upper_bound
SELECT *
FROM hits
WHERE
EventDate = toDate(ts_upper_bound) AND
EventTime <= ts_upper_bound
```
Example 2: Evicting sum(bytes) expression result from SELECT clause column list
```
WITH sum(bytes) as s
SELECT
formatReadableSize(s),
table
FROM system.parts
GROUP BY table
ORDER BY s
```
Example 3: Using results of scalar subquery
```
/* this example would return TOP 10 of most huge tables */
WITH
(
SELECT sum(bytes)
FROM system.parts
WHERE active
) AS total_disk_usage
SELECT
(sum(bytes) / total_disk_usage) * 100 AS table_disk_usage,
table
FROM system.parts
GROUP BY table
ORDER BY table_disk_usage DESC
LIMIT 10
```
Example 4: Re-using expression in subquery
As a workaround for current limitation for expression usage in subqueries, you may duplicate it.
If the FROM clause is omitted, data will be read from the `system.one` table.
The 'system.one' table contains exactly one row (this table fulfills the same purpose as the DUAL table found in other DBMSs).
The FROM clause specifies the table to read data from, or a subquery, or a table function; ARRAY JOIN and the regular JOIN may also be included (see below).
Instead of a table, the SELECT subquery may be specified in brackets.
In this case, the subquery processing pipeline will be built into the processing pipeline of an external query.
In contrast to standard SQL, a synonym does not need to be specified after a subquery. For compatibility, it is possible to write 'AS name' after a subquery, but the specified name isn't used anywhere.
A table function may be specified instead of a table. For more information, see the section "Table functions".
To execute a query, all the columns listed in the query are extracted from the appropriate table. Any columns not needed for the external query are thrown out of the subqueries.
If a query does not list any columns (for example, SELECT count() FROM t), some column is extracted from the table anyway (the smallest one is preferred), in order to calculate the number of rows.
The FINAL modifier can be used only for a SELECT from a CollapsingMergeTree table. When you specify FINAL, data is selected fully "collapsed". Keep in mind that using FINAL leads to a selection that includes columns related to the primary key, in addition to the columns specified in the SELECT. Additionally, the query will be executed in a single stream, and data will be merged during query execution. This means that when using FINAL, the query is processed more slowly. In most cases, you should avoid using FINAL. For more information, see the section "CollapsingMergeTree engine".
When data sampling is enabled, the query is not performed on all the data, but only on a certain fraction of data (sample). For example, if you need to calculate statistics for all the visits, it is enough to execute the query on the 1/10 fraction of all the visits and then multiply the result by 10.
Approximated query processing can be useful in the following cases:
- When you have strict timing requirements (like <100ms)butyoucan'tjustifythecostofadditionalhardwareresourcestomeetthem.
- When your raw data is not accurate, so approximation doesn't noticeably degrade the quality.
- Business requirements target approximate results (for cost-effectiveness, or in order to market exact results to premium users).
!!! note
You can only use sampling with the tables in the [MergeTree](../operations/table_engines/mergetree.md) family, and only if the sampling expression was specified during table creation (see [MergeTree engine](../operations/table_engines/mergetree.md#table_engine-mergetree-creating-a-table)).
- Sampling works consistently for different tables. For tables with a single sampling key, a sample with the same coefficient always selects the same subset of possible data. For example, a sample of user IDs takes rows with the same subset of all the possible user IDs from different tables. This means that you can use the sample in subqueries in the [IN](#select-in-operators) clause. Also, you can join samples using the [JOIN](#select-join) clause.
- Sampling allows reading less data from a disk. Note that you must specify the sampling key correctly. For more information, see [Creating a MergeTree Table](../operations/table_engines/mergetree.md#table_engine-mergetree-creating-a-table).
| `SAMPLE k` | Here `k` is the number from 0 to 1.</br>The query is executed on `k` fraction of data. For example, `SAMPLE 0.1` runs the query on 10% of data. [Read more](#select-sample-k)|
| `SAMPLE n` | Here `n` is a sufficiently large integer.</br>The query is executed on a sample of at least `n` rows (but not significantly more than this). For example, `SAMPLE 10000000` runs the query on a minimum of 10,000,000 rows. [Read more](#select-sample-n) |
| `SAMPLE k OFFSET m` | Here `k` and `m` are the numbers from 0 to 1.</br>The query is executed on a sample of `k` fraction of the data. The data used for the sample is offset by `m` fraction. [Read more](#select-sample-offset) |
In this example, the query is executed on a sample from 0.1 (10%) of data. Values of aggregate functions are not corrected automatically, so to get an approximate result, the value `count()` is manually multiplied by 10.
Here `n` is a sufficiently large integer. For example, `SAMPLE 10000000`.
In this case, the query is executed on a sample of at least `n` rows (but not significantly more than this). For example, `SAMPLE 10000000` runs the query on a minimum of 10,000,000 rows.
Since the minimum unit for data reading is one granule (its size is set by the `index_granularity` setting), it makes sense to set a sample that is much larger than the size of the granule.
When using the `SAMPLE n` clause, you don't know which relative percent of data was processed. So you don't know the coefficient the aggregate functions should be multiplied by. Use the `_sample_factor` virtual column to get the approximate result.
The `_sample_factor` column contains relative coefficients that are calculated dynamically. This column is created automatically when you [create](../operations/table_engines/mergetree.md#table_engine-mergetree-creating-a-table) a table with the specified sampling key. The usage examples of the `_sample_factor` column are shown below.
The example below shows how to calculate the average session duration. Note that you don't need to use the relative coefficient to calculate the average values.
Allows executing `JOIN` with an array or nested data structure. The intent is similar to the [arrayJoin](functions/array_join.md#functions_arrayjoin) function, but its functionality is broader.
The query execution order is optimized when running `ARRAY JOIN`. Although `ARRAY JOIN` must always be specified before the `WHERE/PREWHERE` clause, it can be performed either before `WHERE/PREWHERE` (if the result is needed in this clause), or after completing it (to reduce the volume of calculations). The processing order is controlled by the query optimizer.
-`ARRAY JOIN` - In this case, empty arrays are not included in the result of `JOIN`.
-`LEFT ARRAY JOIN` - The result of `JOIN` contains rows with empty arrays. The value for an empty array is set to the default value for the array element type (usually 0, empty string or NULL).
The examples below demonstrate the usage of the `ARRAY JOIN` and `LEFT ARRAY JOIN` clauses. Let's create a table with an [Array](../data_types/array.md) type column and insert values into it:
An alias can be specified for an array in the `ARRAY JOIN` clause. In this case, an array item can be accessed by this alias, but the array itself is accessed by the original name. Example:
Multiple arrays can be comma-separated in the `ARRAY JOIN` clause. In this case, `JOIN` is performed with them simultaneously (the direct sum, not the cartesian product). Note that all the arrays must have the same size. Example:
When specifying names of nested data structures in `ARRAY JOIN`, the meaning is the same as `ARRAY JOIN` with all the array elements that it consists of. Examples are listed below:
The table names can be specified instead of `<left_subquery>` and `<right_subquery>`. This is equivalent to the `SELECT * FROM table` subquery, except in a special case when the table has the [Join](../operations/table_engines/join.md) engine – an array prepared for joining.
Performing queries, ClickHouse rewrites multi-table joins into the sequence of two-table joins. For example, if there are four tables for join ClickHouse joins the first and the second, then joins the result with the third table, and at the last step, it joins the fourth one.
If a query contains the `WHERE` clause, ClickHouse tries to pushdown filters from this clause through the intermediate join. If it cannot apply the filter to each intermediate join, ClickHouse applies the filters after all joins are completed.
You can use comma-separated lists of tables in the `FROM` clause. This works only with the [allow_experimental_cross_to_join_conversion = 1](../operations/settings/settings.md#settings-allow_experimental_cross_to_join_conversion) setting. For example:
ClickHouse doesn't directly support syntax with commas, so we don't recommend using them. The algorithm tries to rewrite the query in terms of `CROSS JOIN` and `INNER JOIN` clauses and then proceeds to query processing. When rewriting the query, ClickHouse tries to optimize performance and memory consumption. By default, ClickHouse treats commas as an `INNER JOIN` clause and converts `INNER JOIN` to `CROSS JOIN` when the algorithm cannot guarantee that `INNER JOIN` returns the required data.
-`ALL` — If the right table has several matching rows, ClickHouse creates a [Cartesian product](https://en.wikipedia.org/wiki/Cartesian_product) from matching rows. This is the standard `JOIN` behavior in SQL.
-`ANY` — If the right table has several matching rows, only the first one found is joined. If the right table has only one matching row, the results of queries with `ANY` and `ALL` keywords are the same.
`ASOF JOIN` is useful when you need to join records that have no exact match.
Tables for `ASOF JOIN` must have an ordered sequence column. This column cannot be alone in a table, and should be one of the data types: `UInt32`, `UInt64`, `Float32`, `Float64`, `Date`, and `DateTime`.
`ASOF JOIN` takes the timestamp of a user event from `table_1` and finds an event in `table_2` where the timestamp is closest (equal or less) to the timestamp of the event from `table_1`. Herewith the `user_id` column is used for joining on equality and the `ev_time` column is used for joining on the closest match.
In our example, `event_1_1` can be joined with `event_2_1`, `event_1_2` can be joined with `event_2_3`, but `event_2_2` cannot be joined.
To set the default strictness value, use the session configuration parameter [join_default_strictness](../operations/settings/settings.md#settings-join_default_strictness).
When using a normal `JOIN`, the query is sent to remote servers. Subqueries are run on each of them in order to make the right table, and the join is performed with this table. In other words, the right table is formed on each server separately.
When using `GLOBAL ... JOIN`, first the requestor server runs a subquery to calculate the right table. This temporary table is passed to each remote server, and queries are run on them using the temporary data that was transmitted.
When running a `JOIN`, there is no optimization of the order of execution in relation to other stages of the query. The join (a search in the right table) is run before filtering in `WHERE` and before aggregation. In order to explicitly set the processing order, we recommend running a `JOIN` subquery with a subquery.
The columns specified in `USING` must have the same names in both subqueries, and the other columns must be named differently. You can use aliases to change the names of columns in subqueries (the example uses the aliases `hits` and `visits`).
The `USING` clause specifies one or more columns to join, which establishes the equality of these columns. The list of columns is set without brackets. More complex join conditions are not supported.
Each time a query is run with the same `JOIN`, the subquery is run again because the result is not cached. To avoid this, use the special [Join](../operations/table_engines/join.md) table engine, which is a prepared array for joining that is always in RAM.
Among the various types of `JOIN`, the most efficient is `ANY LEFT JOIN`, then `ANY INNER JOIN`. The least efficient are `ALL LEFT JOIN` and `ALL INNER JOIN`.
If you need a `JOIN` for joining with dimension tables (these are relatively small tables that contain dimension properties, such as names for advertising campaigns), a `JOIN` might not be very convenient due to the fact that the right table is re-accessed for every query. For such cases, there is an "external dictionaries" feature that you should use instead of `JOIN`. For more information, see the section [External dictionaries](dicts/external_dicts.md).
ClickHouse uses the [hash join](https://en.wikipedia.org/wiki/Hash_join) algorithm. ClickHouse takes the `<right_subquery>` and creates a hash table for it in RAM. If you need to restrict join operation memory consumption use the following settings:
When any of these limits is reached, ClickHouse acts as the [join_overflow_mode](../operations/settings/query_complexity.md#settings-join_overflow_mode) setting instructs.
While joining tables, the empty cells may appear. The setting [join_use_nulls](../operations/settings/settings.md#settings-join_use_nulls) define how ClickHouse fills these cells.
If the `JOIN` keys are [Nullable](../data_types/nullable.md) fields, the rows where at least one of the keys has the value [NULL](syntax.md#null-literal) are not joined.
- Arbitrary expressions cannot be used in `ON`, `WHERE`, and `GROUP BY` clauses, but you can define an expression in a `SELECT` clause and then use it in these clauses via an alias.
This clause has the same meaning as the WHERE clause. The difference is in which data is read from the table.
When using PREWHERE, first only the columns necessary for executing PREWHERE are read. Then the other columns are read that are needed for running the query, but only those blocks where the PREWHERE expression is true.
It makes sense to use PREWHERE if there are filtration conditions that are used by a minority of the columns in the query, but that provide strong data filtration. This reduces the volume of data to read.
If the 'optimize_move_to_prewhere' setting is set to 1 and PREWHERE is omitted, the system uses heuristics to automatically move parts of expressions from WHERE to PREWHERE.
This is one of the most important parts of a column-oriented DBMS.
If there is a GROUP BY clause, it must contain a list of expressions. Each expression will be referred to here as a "key".
All the expressions in the SELECT, HAVING, and ORDER BY clauses must be calculated from keys or from aggregate functions. In other words, each column selected from the table must be used either in keys or inside aggregate functions.
If a query contains only table columns inside aggregate functions, the GROUP BY clause can be omitted, and aggregation by an empty set of keys is assumed.
However, in contrast to standard SQL, if the table doesn't have any rows (either there aren't any at all, or there aren't any after using WHERE to filter), an empty result is returned, and not the result from one of the rows containing the initial values of aggregate functions.
As opposed to MySQL (and conforming to standard SQL), you can't get some value of some column that is not in a key or aggregate function (except constant expressions). To work around this, you can use the 'any' aggregate function (get the first encountered value) or 'min/max'.
For every different key value encountered, GROUP BY calculates a set of aggregate function values.
GROUP BY is not supported for array columns.
A constant can't be specified as arguments for aggregate functions. Example: sum(1). Instead of this, you can get rid of the constant. Example: `count()`.
If the WITH TOTALS modifier is specified, another row will be calculated. This row will have key columns containing default values (zeros or empty lines), and columns of aggregate functions with the values calculated across all the rows (the "total" values).
This extra row is output in JSON\*, TabSeparated\*, and Pretty\* formats, separately from the other rows. In the other formats, this row is not output.
In JSON\* formats, this row is output as a separate 'totals' field. In TabSeparated\* formats, the row comes after the main result, preceded by an empty row (after the other data). In Pretty\* formats, the row is output as a separate table after the main result.
`WITH TOTALS` can be run in different ways when HAVING is present. The behavior depends on the 'totals_mode' setting.
By default, `totals_mode = 'before_having'`. In this case, 'totals' is calculated across all rows, including the ones that don't pass through HAVING and 'max_rows_to_group_by'.
The other alternatives include only the rows that pass through HAVING in 'totals', and behave differently with the setting `max_rows_to_group_by` and `group_by_overflow_mode = 'any'`.
`after_having_exclusive`– Don't include rows that didn't pass through `max_rows_to_group_by`. In other words, 'totals' will have less than or the same number of rows as it would if `max_rows_to_group_by` were omitted.
`after_having_inclusive`– Include all the rows that didn't pass through 'max_rows_to_group_by' in 'totals'. In other words, 'totals' will have more than or the same number of rows as it would if `max_rows_to_group_by` were omitted.
`after_having_auto`– Count the number of rows that passed through HAVING. If it is more than a certain amount (by default, 50%), include all the rows that didn't pass through 'max_rows_to_group_by' in 'totals'. Otherwise, do not include them.
`totals_auto_threshold`– By default, 0.5. The coefficient for `after_having_auto`.
If `max_rows_to_group_by` and `group_by_overflow_mode = 'any'` are not used, all variations of `after_having` are the same, and you can use any of them (for example, `after_having_auto`).
You can use WITH TOTALS in subqueries, including subqueries in the JOIN clause (in this case, the respective total values are combined).
You can enable dumping temporary data to the disk to restrict memory usage during `GROUP BY`.
The [max_bytes_before_external_group_by](../operations/settings/settings.md#settings-max_bytes_before_external_group_by) setting determines the threshold RAM consumption for dumping `GROUP BY` temporary data to the file system. If set to 0 (the default), it is disabled.
When using `max_bytes_before_external_group_by`, we recommend that you set `max_memory_usage` about twice as high. This is necessary because there are two stages to aggregation: reading the date and forming intermediate data (1) and merging the intermediate data (2). Dumping data to the file system can only occur during stage 1. If the temporary data wasn't dumped, then stage 2 might require up to the same amount of memory as in stage 1.
For example, if [max_memory_usage](../operations/settings/settings.md#settings_max_memory_usage) was set to 10000000000 and you want to use external aggregation, it makes sense to set `max_bytes_before_external_group_by` to 10000000000, and max_memory_usage to 20000000000. When external aggregation is triggered (if there was at least one dump of temporary data), maximum consumption of RAM is only slightly more than `max_bytes_before_external_group_by`.
With distributed query processing, external aggregation is performed on remote servers. In order for the requester server to use only a small amount of RAM, set `distributed_aggregation_memory_efficient` to 1.
When merging data flushed to the disk, as well as when merging results from remote servers when the `distributed_aggregation_memory_efficient` setting is enabled, consumes up to `1/256 * the_number_of_threads` from the total amount of RAM.
When external aggregation is enabled, if there was less than `max_bytes_before_external_group_by` of data (i.e. data was not flushed), the query runs just as fast as without external aggregation. If any temporary data was flushed, the run time will be several times longer (approximately three times).
If you have an `ORDER BY` with a `LIMIT` after `GROUP BY`, then the amount of used RAM depends on the amount of data in `LIMIT`, not in the whole table. But if the `ORDER BY` doesn't have `LIMIT`, don't forget to enable external sorting (`max_bytes_before_external_sort`).
A query with the `LIMIT n BY expressions` clause selects the first `n` rows for each distinct value of `expressions`. The key for `LIMIT BY` can contain any number of [expressions](syntax.md#syntax-expressions).
During query processing, ClickHouse selects data ordered by sorting key. The sorting key is set explicitly using an [ORDER BY](#select-order-by) clause or implicitly as a property of the table engine. Then ClickHouse applies `LIMIT n BY expressions` and returns the first `n` rows for each distinct combination of `expressions`. If `OFFSET` is specified, then for each data block that belongs to a distinct combination of `expressions`, ClickHouse skips `offset_value` number of rows from the beginning of the block and returns a maximum of `n` rows as a result. If `offset_value` is bigger than the number of rows in the data block, ClickHouse returns zero rows from the block.
The ORDER BY clause contains a list of expressions, which can each be assigned DESC or ASC (the sorting direction). If the direction is not specified, ASC is assumed. ASC is sorted in ascending order, and DESC in descending order. The sorting direction applies to a single expression, not to the entire list. Example: `ORDER BY Visits DESC, SearchPhrase`
For sorting by String values, you can specify collation (comparison). Example: `ORDER BY SearchPhrase COLLATE 'tr'` - for sorting by keyword in ascending order, using the Turkish alphabet, case insensitive, assuming that strings are UTF-8 encoded. COLLATE can be specified or not for each expression in ORDER BY independently. If ASC or DESC is specified, COLLATE is specified after it. When using COLLATE, sorting is always case-insensitive.
We only recommend using COLLATE for final sorting of a small number of rows, since sorting with COLLATE is less efficient than normal sorting by bytes.
Rows that have identical values for the list of sorting expressions are output in an arbitrary order, which can also be nondeterministic (different each time).
If the ORDER BY clause is omitted, the order of the rows is also undefined, and may be nondeterministic as well.
When floating point numbers are sorted, NaNs are separate from the other values. Regardless of the sorting order, NaNs come at the end. In other words, for ascending sorting they are placed as if they are larger than all the other numbers, while for descending sorting they are placed as if they are smaller than the rest.
Less RAM is used if a small enough LIMIT is specified in addition to ORDER BY. Otherwise, the amount of memory spent is proportional to the volume of data for sorting. For distributed query processing, if GROUP BY is omitted, sorting is partially done on remote servers, and the results are merged on the requestor server. This means that for distributed sorting, the volume of data to sort can be greater than the amount of memory on a single server.
If there is not enough RAM, it is possible to perform sorting in external memory (creating temporary files on a disk). Use the setting `max_bytes_before_external_sort` for this purpose. If it is set to 0 (the default), external sorting is disabled. If it is enabled, when the volume of data to sort reaches the specified number of bytes, the collected data is sorted and dumped into a temporary file. After all data is read, all the sorted files are merged and the results are output. Files are written to the /var/lib/clickhouse/tmp/ directory in the config (by default, but you can use the 'tmp_path' parameter to change this setting).
Running a query may use more memory than 'max_bytes_before_external_sort'. For this reason, this setting must have a value significantly smaller than 'max_memory_usage'. As an example, if your server has 128 GB of RAM and you need to run a single query, set 'max_memory_usage' to 100 GB, and 'max_bytes_before_external_sort' to 80 GB.
External sorting works much less effectively than sorting in RAM.
If DISTINCT is specified, only a single row will remain out of all the sets of fully matching rows in the result.
The result will be the same as if GROUP BY were specified across all the fields specified in SELECT without aggregate functions. But there are several differences from GROUP BY:
`DISTINCT` works with [NULL](syntax.md) as if `NULL` were a specific value, and `NULL=NULL`. In other words, in the `DISTINCT` results, different combinations with `NULL` only occur once.
ClickHouse supports using the `DISTINCT` and `ORDER BY` clauses for different columns in one query. The `DISTINCT` clause is executed before the `ORDER BY` clause.
`LIMIT n, m` allows you to select the first `m` rows from the result after skipping the first `n` rows. The `LIMIT m OFFSET n` syntax is also supported.
Only UNION ALL is supported. The regular UNION (UNION DISTINCT) is not supported. If you need UNION DISTINCT, you can write SELECT DISTINCT from a subquery containing UNION ALL.
The structure of results (the number and type of columns) must match for the queries. But the column names can differ. In this case, the column names for the final result will be taken from the first query. Type casting is performed for unions. For example, if two queries being combined have the same field with non-`Nullable` and `Nullable` types from a compatible type, the resulting `UNION ALL` has a `Nullable` type field.
Queries that are parts of UNION ALL can't be enclosed in brackets. ORDER BY and LIMIT are applied to separate queries, not to the final result. If you need to apply a conversion to the final result, you can put all the queries with UNION ALL in a subquery in the FROM clause.
Specify 'FORMAT format' to get data in any specified format.
You can use this for convenience, or for creating dumps.
For more information, see the section "Formats".
If the FORMAT clause is omitted, the default format is used, which depends on both the settings and the interface used for accessing the DB. For the HTTP interface and the command-line client in batch mode, the default format is TabSeparated. For the command-line client in interactive mode, the default format is PrettyCompact (it has attractive and compact tables).
When using the command-line client, data is passed to the client in an internal efficient format. The client independently interprets the FORMAT clause of the query and formats the data itself (thus relieving the network and the server from the load).
SELECT (CounterID, UserID) IN ((34, 123), (101500, 456)) FROM ...
```
If the left side is a single column that is in the index, and the right side is a set of constants, the system uses the index for processing the query.
Don't list too many values explicitly (i.e. millions). If a data set is large, put it in a temporary table (for example, see the section "External data for query processing"), then use a subquery.
The right side of the operator can be a set of constant expressions, a set of tuples with constant expressions (shown in the examples above), or the name of a database table or SELECT subquery in brackets.
If the right side of the operator is the name of a table (for example, `UserID IN users`), this is equivalent to the subquery `UserID IN (SELECT * FROM users)`. Use this when working with external data that is sent along with the query. For example, the query can be sent together with a set of user IDs loaded to the 'users' temporary table, which should be filtered.
If the right side of the operator is a table name that has the Set engine (a prepared data set that is always in RAM), the data set will not be created over again for each query.
The subquery may specify more than one column for filtering tuples.
During request processing, the IN operator assumes that the result of an operation with [NULL](syntax.md) is always equal to `0`, regardless of whether `NULL` is on the right or left side of the operator. `NULL` values are not included in any dataset, do not correspond to each other and cannot be compared.
You can see that the row in which `y = NULL` is thrown out of the query results. This is because ClickHouse can't decide whether `NULL` is included in the `(NULL,3)` set, returns `0` as the result of the operation, and `SELECT` excludes this row from the final output.
There are two options for IN-s with subqueries (similar to JOINs): normal `IN` / `JOIN` and `GLOBAL IN` / `GLOBAL JOIN`. They differ in how they are run for distributed query processing.
Remember that the algorithms described below may work differently depending on the [settings](../operations/settings/settings.md) `distributed_product_mode` setting.
When using `GLOBAL IN` / `GLOBAL JOINs`, first all the subqueries are run for `GLOBAL IN` / `GLOBAL JOINs`, and the results are collected in temporary tables. Then the temporary tables are sent to each remote server, where the queries are run using this temporary data.
Let's look at some examples. Assume that each server in the cluster has a normal **local_table**. Each server also has a **distributed_table** table with the **Distributed** type, which looks at all the servers in the cluster.
For a query to the **distributed_table**, the query will be sent to all the remote servers and run on them using the **local_table**.
and run on each of them in parallel, until it reaches the stage where intermediate results can be combined. Then the intermediate results will be returned to the requestor server and merged on it, and the final result will be sent to the client.
SELECT uniq(UserID) FROM local_table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM local_table WHERE CounterID = 34)
```
In other words, the data set in the IN clause will be collected on each server independently, only across the data that is stored locally on each of the servers.
This will work correctly and optimally if you are prepared for this case and have spread data across the cluster servers such that the data for a single UserID resides entirely on a single server. In this case, all the necessary data will be available locally on each server. Otherwise, the result will be inaccurate. We refer to this variation of the query as "local IN".
To correct how the query works when data is spread randomly across the cluster servers, you could specify **distributed_table** inside a subquery. The query would look like this:
SELECT uniq(UserID) FROM local_table WHERE CounterID = 101500 AND UserID IN (SELECT UserID FROM distributed_table WHERE CounterID = 34)
```
The subquery will begin running on each remote server. Since the subquery uses a distributed table, the subquery that is on each remote server will be resent to every remote server as
SELECT UserID FROM local_table WHERE CounterID = 34
```
For example, if you have a cluster of 100 servers, executing the entire query will require 10,000 elementary requests, which is generally considered unacceptable.
In such cases, you should always use GLOBAL IN instead of IN. Let's look at how it works for the query
This is more optimal than using the normal IN. However, keep the following points in mind:
1. When creating a temporary table, data is not made unique. To reduce the volume of data transmitted over the network, specify DISTINCT in the subquery. (You don't need to do this for a normal IN.)
2. The temporary table will be sent to all the remote servers. Transmission does not account for network topology. For example, if 10 remote servers reside in a datacenter that is very remote in relation to the requestor server, the data will be sent 10 times over the channel to the remote datacenter. Try to avoid large data sets when using GLOBAL IN.
3. When transmitting data to remote servers, restrictions on network bandwidth are not configurable. You might overload the network.
4. Try to distribute data across servers so that you don't need to use GLOBAL IN on a regular basis.
5. If you need to use GLOBAL IN often, plan the location of the ClickHouse cluster so that a single group of replicas resides in no more than one data center with a fast network between them, so that a query can be processed entirely within a single data center.
It also makes sense to specify a local table in the `GLOBAL IN` clause, in case this local table is only available on the requestor server and you want to use data from it on remote servers.
In addition to results, you can also get minimum and maximum values for the results columns. To do this, set the **extremes** setting to 1. Minimums and maximums are calculated for numeric types, dates, and dates with times. For other columns, the default values are output.
An extra two rows are calculated – the minimums and maximums, respectively. These extra two rows are output in `JSON*`, `TabSeparated*`, and `Pretty*` [formats](../interfaces/formats.md), separate from the other rows. They are not output for other formats.
In `JSON*` formats, the extreme values are output in a separate 'extremes' field. In `TabSeparated*` formats, the row comes after the main result, and after 'totals' if present. It is preceded by an empty row (after the other data). In `Pretty*` formats, the row is output as a separate table after the main result, and after `totals` if present.
Extreme values are calculated for rows before `LIMIT`, but after `LIMIT BY`. However, when using `LIMIT offset, size`, the rows before `offset` are included in `extremes`. In stream requests, the result may also include a small number of rows that passed through `LIMIT`.
The `GROUP BY` and `ORDER BY` clauses do not support positional arguments. This contradicts MySQL, but conforms to standard SQL.
For example, `GROUP BY 1, 2` will be interpreted as grouping by constants (i.e. aggregation of all rows into one).
You can use synonyms (`AS` aliases) in any part of a query.
You can put an asterisk in any part of a query instead of an expression. When the query is analyzed, the asterisk is expanded to a list of all table columns (excluding the `MATERIALIZED` and `ALIAS` columns). There are only a few cases when using an asterisk is justified:
- When creating a table dump.
- For tables containing just a few columns, such as system tables.
- For getting information about what columns are in a table. In this case, set `LIMIT 1`. But it is better to use the `DESC TABLE` query.
- When there is strong filtration on a small number of columns using `PREWHERE`.
- In subqueries (since columns that aren't needed for the external query are excluded from subqueries).
In all other cases, we don't recommend using the asterisk, since it only gives you the drawbacks of a columnar DBMS instead of the advantages. In other words using the asterisk is not recommended.