ClickHouse/src/Functions/FunctionsConversion.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4732 lines
226 KiB
C++
Raw Normal View History

2011-10-15 23:40:56 +00:00
#pragma once
2021-09-29 16:42:41 +00:00
#include <cstddef>
2016-01-13 00:32:59 +00:00
#include <type_traits>
#include <IO/WriteBufferFromVector.h>
#include <IO/ReadBufferFromMemory.h>
ColumnConst unification (#1011) * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * Fixed error in ColumnArray::replicateGeneric [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150].
2017-07-21 06:35:58 +00:00
#include <IO/Operators.h>
#include <IO/parseDateTimeBestEffort.h>
#include <DataTypes/DataTypeFactory.h>
#include <DataTypes/DataTypesNumber.h>
2018-08-21 18:25:38 +00:00
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeString.h>
#include <DataTypes/DataTypeFixedString.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDate32.h>
#include <DataTypes/DataTypeDateTime.h>
#include <DataTypes/DataTypeDateTime64.h>
#include <DataTypes/DataTypeEnum.h>
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/DataTypeTuple.h>
2020-10-10 06:49:03 +00:00
#include <DataTypes/DataTypeMap.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypeNothing.h>
#include <DataTypes/DataTypeUUID.h>
#include <DataTypes/DataTypeInterval.h>
#include <DataTypes/DataTypeAggregateFunction.h>
2021-08-10 01:33:57 +00:00
#include <DataTypes/DataTypeObject.h>
2022-01-27 00:24:34 +00:00
#include <DataTypes/ObjectUtils.h>
#include <DataTypes/DataTypeNested.h>
2021-03-09 14:46:52 +00:00
#include <DataTypes/Serializations/SerializationDecimal.h>
#include <Formats/FormatSettings.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnFixedString.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnAggregateFunction.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnNullable.h>
#include <Columns/ColumnTuple.h>
2020-10-10 06:49:03 +00:00
#include <Columns/ColumnMap.h>
2021-08-10 01:33:57 +00:00
#include <Columns/ColumnObject.h>
#include <Columns/ColumnsCommon.h>
#include <Columns/ColumnStringHelpers.h>
#include <Common/assert_cast.h>
2023-04-05 12:25:51 +00:00
#include <Common/Concepts.h>
2020-11-18 09:38:03 +00:00
#include <Common/quoteString.h>
2023-01-03 00:24:56 +00:00
#include <Common/Exception.h>
2020-11-05 19:09:17 +00:00
#include <Core/AccurateComparison.h>
#include <Functions/IFunctionAdaptors.h>
#include <Functions/FunctionsMiscellaneous.h>
ColumnConst unification (#1011) * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * Fixed error in ColumnArray::replicateGeneric [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150].
2017-07-21 06:35:58 +00:00
#include <Functions/FunctionHelpers.h>
#include <Functions/DateTimeTransforms.h>
#include <Functions/toFixedString.h>
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
#include <Functions/TransformDateTime64.h>
#include <Functions/FunctionsCodingIP.h>
2023-11-10 04:23:50 +00:00
#include <Functions/CastOverloadResolver.h>
#include <DataTypes/DataTypeLowCardinality.h>
#include <Columns/ColumnLowCardinality.h>
#include <Interpreters/Context.h>
#include <Common/HashTable/HashMap.h>
#include <DataTypes/DataTypeIPv4andIPv6.h>
#include <Common/IPv6ToBinary.h>
2023-09-07 12:41:01 +00:00
#include "DataTypes/IDataType.h"
#include <Core/Types.h>
2011-10-15 23:40:56 +00:00
namespace DB
{
2016-01-12 02:21:15 +00:00
namespace ErrorCodes
{
extern const int ATTEMPT_TO_READ_AFTER_EOF;
2016-01-12 02:21:15 +00:00
extern const int CANNOT_PARSE_NUMBER;
extern const int CANNOT_READ_ARRAY_FROM_TEXT;
extern const int CANNOT_PARSE_INPUT_ASSERTION_FAILED;
extern const int CANNOT_PARSE_QUOTED_STRING;
extern const int CANNOT_PARSE_ESCAPE_SEQUENCE;
extern const int CANNOT_PARSE_DATE;
extern const int CANNOT_PARSE_DATETIME;
extern const int CANNOT_PARSE_TEXT;
extern const int CANNOT_PARSE_UUID;
extern const int CANNOT_PARSE_IPV4;
extern const int CANNOT_PARSE_IPV6;
2018-12-07 03:20:27 +00:00
extern const int TOO_FEW_ARGUMENTS_FOR_FUNCTION;
extern const int LOGICAL_ERROR;
extern const int TYPE_MISMATCH;
extern const int CANNOT_CONVERT_TYPE;
extern const int ILLEGAL_COLUMN;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NOT_IMPLEMENTED;
extern const int CANNOT_INSERT_NULL_IN_ORDINARY_COLUMN;
extern const int CANNOT_PARSE_BOOL;
2023-10-23 13:01:45 +00:00
extern const int VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE;
}
/** Type conversion functions.
* toType - conversion in "natural way";
2011-10-15 23:40:56 +00:00
*/
2018-08-21 18:25:38 +00:00
inline UInt32 extractToDecimalScale(const ColumnWithTypeAndName & named_column)
{
const auto * arg_type = named_column.type.get();
bool ok = checkAndGetDataType<DataTypeUInt64>(arg_type)
|| checkAndGetDataType<DataTypeUInt32>(arg_type)
|| checkAndGetDataType<DataTypeUInt16>(arg_type)
|| checkAndGetDataType<DataTypeUInt8>(arg_type);
if (!ok)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type of toDecimal() scale {}", named_column.type->getName());
2018-08-21 18:25:38 +00:00
Field field;
named_column.column->get(0, field);
return static_cast<UInt32>(field.get<UInt32>());
2018-08-21 18:25:38 +00:00
}
/// Function toUnixTimestamp has exactly the same implementation as toDateTime of String type.
struct NameToUnixTimestamp { static constexpr auto name = "toUnixTimestamp"; };
struct AccurateConvertStrategyAdditions
2020-11-05 19:09:17 +00:00
{
2020-11-12 11:27:02 +00:00
UInt32 scale { 0 };
2020-11-05 19:09:17 +00:00
};
struct AccurateOrNullConvertStrategyAdditions
2020-11-05 19:09:17 +00:00
{
UInt32 scale { 0 };
2020-11-05 19:09:17 +00:00
};
2011-10-15 23:40:56 +00:00
struct ConvertDefaultBehaviorTag {};
struct ConvertReturnNullOnErrorTag {};
struct ConvertReturnZeroOnErrorTag {};
/** Conversion of number types to each other, enums to numbers, dates and datetimes to numbers and back: done by straight assignment.
* (Date is represented internally as number of days from some day; DateTime - as unix timestamp)
2011-10-15 23:40:56 +00:00
*/
template <typename FromDataType, typename ToDataType, typename Name,
typename SpecialTag = ConvertDefaultBehaviorTag,
FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior = default_date_time_overflow_behavior>
2011-10-16 01:57:10 +00:00
struct ConvertImpl
2011-10-15 23:40:56 +00:00
{
using FromFieldType = typename FromDataType::FieldType;
using ToFieldType = typename ToDataType::FieldType;
2018-08-31 08:59:21 +00:00
template <typename Additions = void *>
2020-10-19 18:37:44 +00:00
static ColumnPtr NO_SANITIZE_UNDEFINED execute(
2021-05-03 19:56:40 +00:00
const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type [[maybe_unused]], size_t input_rows_count,
2020-10-17 14:23:37 +00:00
Additions additions [[maybe_unused]] = Additions())
2011-10-15 23:40:56 +00:00
{
2020-10-17 14:23:37 +00:00
const ColumnWithTypeAndName & named_from = arguments[0];
2018-08-21 18:25:38 +00:00
using ColVecFrom = typename FromDataType::ColumnType;
using ColVecTo = typename ToDataType::ColumnType;
if constexpr ((IsDataTypeDecimal<FromDataType> || IsDataTypeDecimal<ToDataType>)
&& !(std::is_same_v<DataTypeDateTime64, FromDataType> || std::is_same_v<DataTypeDateTime64, ToDataType>))
{
if constexpr (!IsDataTypeDecimalOrNumber<FromDataType> || !IsDataTypeDecimalOrNumber<ToDataType>)
{
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
named_from.column->getName(), Name::name);
}
}
if (const ColVecFrom * col_from = checkAndGetColumn<ColVecFrom>(named_from.column.get()))
2011-10-15 23:40:56 +00:00
{
typename ColVecTo::MutablePtr col_to = nullptr;
2022-01-27 10:07:53 +00:00
if constexpr (IsDataTypeDecimal<ToDataType>)
2018-08-21 18:25:38 +00:00
{
2022-01-27 16:02:31 +00:00
UInt32 scale;
if constexpr (std::is_same_v<Additions, AccurateConvertStrategyAdditions>
|| std::is_same_v<Additions, AccurateOrNullConvertStrategyAdditions>)
2020-11-05 19:09:17 +00:00
{
scale = additions.scale;
}
else
{
scale = additions;
}
col_to = ColVecTo::create(0, scale);
2018-08-21 18:25:38 +00:00
}
else
col_to = ColVecTo::create();
const auto & vec_from = col_from->getData();
auto & vec_to = col_to->getData();
2021-05-03 19:56:40 +00:00
vec_to.resize(input_rows_count);
2020-11-05 19:09:17 +00:00
ColumnUInt8::MutablePtr col_null_map_to;
ColumnUInt8::Container * vec_null_map_to [[maybe_unused]] = nullptr;
if constexpr (std::is_same_v<Additions, AccurateOrNullConvertStrategyAdditions>)
2020-11-05 19:09:17 +00:00
{
2021-05-03 19:56:40 +00:00
col_null_map_to = ColumnUInt8::create(input_rows_count, false);
2020-11-05 19:09:17 +00:00
vec_null_map_to = &col_null_map_to->getData();
}
2021-12-23 13:46:16 +00:00
bool result_is_bool = isBool(result_type);
2021-05-03 19:56:40 +00:00
for (size_t i = 0; i < input_rows_count; ++i)
2018-08-21 18:25:38 +00:00
{
if constexpr (std::is_same_v<ToDataType, DataTypeUInt8>)
{
if (result_is_bool)
{
vec_to[i] = vec_from[i] != FromFieldType(0);
continue;
}
}
if constexpr (std::is_same_v<FromDataType, DataTypeUUID> && std::is_same_v<ToDataType, DataTypeUInt128>)
2023-06-30 09:49:29 +00:00
{
static_assert(
std::is_same_v<DataTypeUInt128::FieldType, DataTypeUUID::FieldType::UnderlyingType>,
"UInt128 and UUID types must be same");
vec_to[i].items[1] = vec_from[i].toUnderType().items[0];
vec_to[i].items[0] = vec_from[i].toUnderType().items[1];
2023-06-30 09:49:29 +00:00
continue;
}
if constexpr (std::is_same_v<FromDataType, DataTypeIPv6> && std::is_same_v<ToDataType, DataTypeUInt128>)
{
static_assert(
std::is_same_v<DataTypeUInt128::FieldType, DataTypeUUID::FieldType::UnderlyingType>,
"UInt128 and IPv6 types must be same");
vec_to[i].items[1] = std::byteswap(vec_from[i].toUnderType().items[0]);
vec_to[i].items[0] = std::byteswap(vec_from[i].toUnderType().items[1]);
continue;
}
2021-05-03 15:41:37 +00:00
if constexpr (std::is_same_v<FromDataType, DataTypeUUID> != std::is_same_v<ToDataType, DataTypeUUID>)
{
throw Exception(ErrorCodes::NOT_IMPLEMENTED,
"Conversion between numeric types and UUID is not supported. "
"Probably the passed UUID is unquoted");
}
else if constexpr (
(std::is_same_v<FromDataType, DataTypeIPv4> != std::is_same_v<ToDataType, DataTypeIPv4>)
2023-05-11 16:17:52 +00:00
&& !(is_any_of<FromDataType, DataTypeUInt8, DataTypeUInt16, DataTypeUInt32, DataTypeUInt64, DataTypeIPv6> || is_any_of<ToDataType, DataTypeUInt32, DataTypeUInt64, DataTypeUInt128, DataTypeUInt256, DataTypeIPv6>)
)
{
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Conversion from {} to {} is not supported",
TypeName<typename FromDataType::FieldType>, TypeName<typename ToDataType::FieldType>);
}
2023-05-11 16:17:52 +00:00
else if constexpr (std::is_same_v<FromDataType, DataTypeIPv6> != std::is_same_v<ToDataType, DataTypeIPv6> && !(std::is_same_v<ToDataType, DataTypeIPv4> || std::is_same_v<FromDataType, DataTypeIPv4>))
{
throw Exception(ErrorCodes::NOT_IMPLEMENTED,
"Conversion between numeric types and IPv6 is not supported. "
"Probably the passed IPv6 is unquoted");
}
else
{
if constexpr (IsDataTypeDecimal<FromDataType> || IsDataTypeDecimal<ToDataType>)
2020-11-12 11:27:02 +00:00
{
2020-12-15 18:54:16 +00:00
if constexpr (std::is_same_v<Additions, AccurateOrNullConvertStrategyAdditions>)
{
ToFieldType result;
bool convert_result = false;
if constexpr (IsDataTypeDecimal<FromDataType> && IsDataTypeDecimal<ToDataType>)
2022-01-27 16:02:31 +00:00
convert_result = tryConvertDecimals<FromDataType, ToDataType>(vec_from[i], col_from->getScale(), col_to->getScale(), result);
2020-12-15 18:54:16 +00:00
else if constexpr (IsDataTypeDecimal<FromDataType> && IsDataTypeNumber<ToDataType>)
2022-01-27 16:02:31 +00:00
convert_result = tryConvertFromDecimal<FromDataType, ToDataType>(vec_from[i], col_from->getScale(), result);
2020-12-15 18:54:16 +00:00
else if constexpr (IsDataTypeNumber<FromDataType> && IsDataTypeDecimal<ToDataType>)
2022-01-27 16:02:31 +00:00
convert_result = tryConvertToDecimal<FromDataType, ToDataType>(vec_from[i], col_to->getScale(), result);
2020-12-15 18:54:16 +00:00
if (convert_result)
vec_to[i] = result;
else
{
vec_to[i] = static_cast<ToFieldType>(0);
2020-12-15 18:54:16 +00:00
(*vec_null_map_to)[i] = true;
}
2020-12-15 18:54:16 +00:00
}
else
2020-11-12 11:27:02 +00:00
{
if constexpr (IsDataTypeDecimal<FromDataType> && IsDataTypeDecimal<ToDataType>)
2022-01-27 16:02:31 +00:00
vec_to[i] = convertDecimals<FromDataType, ToDataType>(vec_from[i], col_from->getScale(), col_to->getScale());
else if constexpr (IsDataTypeDecimal<FromDataType> && IsDataTypeNumber<ToDataType>)
2022-01-27 16:02:31 +00:00
vec_to[i] = convertFromDecimal<FromDataType, ToDataType>(vec_from[i], col_from->getScale());
else if constexpr (IsDataTypeNumber<FromDataType> && IsDataTypeDecimal<ToDataType>)
2022-01-27 16:02:31 +00:00
vec_to[i] = convertToDecimal<FromDataType, ToDataType>(vec_from[i], col_to->getScale());
else
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Unsupported data type in conversion function");
2020-11-12 11:27:02 +00:00
}
2020-11-05 19:09:17 +00:00
}
else
2020-11-10 13:18:58 +00:00
{
/// If From Data is Nan or Inf and we convert to integer type, throw exception
if constexpr (std::is_floating_point_v<FromFieldType> && !std::is_floating_point_v<ToFieldType>)
2020-11-10 13:18:58 +00:00
{
if (!isFinite(vec_from[i]))
2020-11-10 13:18:58 +00:00
{
if constexpr (std::is_same_v<Additions, AccurateOrNullConvertStrategyAdditions>)
{
vec_to[i] = 0;
2020-12-08 10:54:33 +00:00
(*vec_null_map_to)[i] = true;
continue;
}
else
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Unexpected inf or nan to integer conversion");
2020-11-10 13:18:58 +00:00
}
}
if constexpr (std::is_same_v<Additions, AccurateOrNullConvertStrategyAdditions>
|| std::is_same_v<Additions, AccurateConvertStrategyAdditions>)
2020-11-10 13:18:58 +00:00
{
bool convert_result = accurate::convertNumeric(vec_from[i], vec_to[i]);
if (!convert_result)
{
if (std::is_same_v<Additions, AccurateOrNullConvertStrategyAdditions>)
{
vec_to[i] = 0;
(*vec_null_map_to)[i] = true;
}
else
{
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Value in column {} cannot be safely converted into type {}",
named_from.column->getName(), result_type->getName());
}
}
}
else
2020-11-05 19:09:17 +00:00
{
if constexpr (std::is_same_v<ToDataType, DataTypeIPv4> && std::is_same_v<FromDataType, DataTypeIPv6>)
{
const uint8_t ip4_cidr[] {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00};
const uint8_t * src = reinterpret_cast<const uint8_t *>(&vec_from[i].toUnderType());
if (!matchIPv6Subnet(src, ip4_cidr, 96))
2023-05-31 15:26:58 +00:00
{
char addr[IPV6_MAX_TEXT_LENGTH + 1] {};
char * paddr = addr;
formatIPv6(src, paddr);
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "IPv6 {} in column {} is not in IPv4 mapping block", addr, named_from.column->getName());
}
uint8_t * dst = reinterpret_cast<uint8_t *>(&vec_to[i].toUnderType());
if constexpr (std::endian::native == std::endian::little)
{
dst[0] = src[15];
dst[1] = src[14];
dst[2] = src[13];
dst[3] = src[12];
}
else
{
dst[0] = src[12];
2023-05-11 16:17:52 +00:00
dst[1] = src[13];
dst[2] = src[14];
dst[3] = src[15];
}
}
else if constexpr (std::is_same_v<ToDataType, DataTypeIPv6> && std::is_same_v<FromDataType, DataTypeIPv4>)
{
const uint8_t * src = reinterpret_cast<const uint8_t *>(&vec_from[i].toUnderType());
uint8_t * dst = reinterpret_cast<uint8_t *>(&vec_to[i].toUnderType());
std::memset(dst, '\0', IPV6_BINARY_LENGTH);
dst[10] = dst[11] = 0xff;
if constexpr (std::endian::native == std::endian::little)
{
dst[12] = src[3];
dst[13] = src[2];
dst[14] = src[1];
dst[15] = src[0];
}
else
{
dst[12] = src[0];
dst[13] = src[1];
dst[14] = src[2];
dst[15] = src[3];
}
}
else if constexpr (std::is_same_v<ToDataType, DataTypeIPv4> && std::is_same_v<FromDataType, DataTypeUInt64>)
vec_to[i] = static_cast<ToFieldType>(static_cast<IPv4::UnderlyingType>(vec_from[i]));
else if constexpr (std::is_same_v<Name, NameToUnixTimestamp> && (std::is_same_v<FromDataType, DataTypeDate> || std::is_same_v<FromDataType, DataTypeDate32>))
vec_to[i] = static_cast<ToFieldType>(vec_from[i] * DATE_SECONDS_PER_DAY);
else
vec_to[i] = static_cast<ToFieldType>(vec_from[i]);
2020-11-05 19:09:17 +00:00
}
}
}
2018-08-21 18:25:38 +00:00
}
if constexpr (std::is_same_v<Additions, AccurateOrNullConvertStrategyAdditions>)
2020-11-05 19:09:17 +00:00
return ColumnNullable::create(std::move(col_to), std::move(col_null_map_to));
else
return col_to;
2011-10-15 23:40:56 +00:00
}
else
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
named_from.column->getName(), Name::name);
2011-10-15 23:40:56 +00:00
}
2011-10-16 01:57:10 +00:00
};
/** Conversion of DateTime to Date: throw off time component.
*/
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDateTime, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDateTime, DataTypeDate, ToDateImpl<date_time_overflow_behavior>, false> {};
2021-07-15 11:40:45 +00:00
/** Conversion of DateTime to Date32: throw off time component.
*/
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDateTime, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDateTime, DataTypeDate32, ToDate32Impl, false> {};
2011-10-15 23:40:56 +00:00
/** Conversion of Date to DateTime: adding 00:00:00 time component.
2011-10-16 01:57:10 +00:00
*/
template <FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior = default_date_time_overflow_behavior>
struct ToDateTimeImpl
2011-10-16 01:57:10 +00:00
{
static constexpr auto name = "toDateTime";
static UInt32 execute(UInt16 d, const DateLUTImpl & time_zone)
2011-10-15 23:40:56 +00:00
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (d > MAX_DATETIME_DAY_NUM) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Day number {} is out of bounds of type DateTime", d);
}
else if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Saturate)
{
if (d > MAX_DATETIME_DAY_NUM)
d = MAX_DATETIME_DAY_NUM;
}
return static_cast<UInt32>(time_zone.fromDayNum(DayNum(d)));
2011-10-15 23:40:56 +00:00
}
static UInt32 execute(Int32 d, const DateLUTImpl & time_zone)
2021-07-15 11:40:45 +00:00
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Saturate)
{
if (d < 0)
return 0;
else if (d > MAX_DATETIME_DAY_NUM)
d = MAX_DATETIME_DAY_NUM;
}
else if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (d < 0 || d > MAX_DATETIME_DAY_NUM) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Value {} is out of bounds of type DateTime", d);
}
return static_cast<UInt32>(time_zone.fromDayNum(ExtendedDayNum(d)));
2021-07-15 11:40:45 +00:00
}
static UInt32 execute(UInt32 dt, const DateLUTImpl & /*time_zone*/)
{
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
return dt;
}
static UInt32 execute(Int64 dt64, const DateLUTImpl & /*time_zone*/)
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Ignore)
return static_cast<UInt32>(dt64);
else
{
if (dt64 < 0 || dt64 >= MAX_DATETIME_TIMESTAMP)
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Saturate)
return dt64 < 0 ? 0 : std::numeric_limits<UInt32>::max();
2023-10-26 23:13:52 +00:00
else
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Value {} is out of bounds of type DateTime", dt64);
}
else
return static_cast<UInt32>(dt64);
}
}
2011-10-16 01:57:10 +00:00
};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDate, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDate, DataTypeDateTime, ToDateTimeImpl<date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDate32, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDate32, DataTypeDateTime, ToDateTimeImpl<date_time_overflow_behavior>, false> {};
2021-07-15 11:40:45 +00:00
/// Implementation of toDate function.
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2015-10-22 15:31:42 +00:00
struct ToDateTransform32Or64
{
static constexpr auto name = "toDate";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl & time_zone)
2015-10-22 15:31:42 +00:00
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from > MAX_DATETIME_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Value {} is out of bounds of type Date", from);
}
/// if value is smaller (or equal) than maximum day value for Date, than treat it as day num,
/// otherwise treat it as unix timestamp. This is a bit weird, but we leave this behavior.
if (from <= DATE_LUT_MAX_DAY_NUM)
return from;
else
return time_zone.toDayNum(std::min(time_t(from), time_t(MAX_DATETIME_TIMESTAMP)));
2015-10-22 15:31:42 +00:00
}
};
/** Conversion of Date32 to Date.
*/
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDate32, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDate32, DataTypeDate, ToDateImpl<date_time_overflow_behavior>, false> {};
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2020-08-07 17:38:42 +00:00
struct ToDateTransform32Or64Signed
{
static constexpr auto name = "toDate";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl & time_zone)
2020-08-07 17:38:42 +00:00
{
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
// TODO: decide narrow or extended range based on FromType
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from < 0 || from > MAX_DATE_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Value {} is out of bounds of type Date", from);
}
else
{
if (from < 0)
return 0;
}
return (from <= DATE_LUT_MAX_DAY_NUM)
? static_cast<ToType>(from)
: time_zone.toDayNum(std::min(time_t(from), time_t(MAX_DATE_TIMESTAMP)));
2020-08-07 17:38:42 +00:00
}
};
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2020-08-07 17:38:42 +00:00
struct ToDateTransform8Or16Signed
{
static constexpr auto name = "toDate";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl &)
2020-08-07 17:38:42 +00:00
{
2020-08-07 19:52:21 +00:00
if (from < 0)
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Value {} is out of bounds of type Date", from);
else
return 0;
}
2020-08-07 17:38:42 +00:00
return from;
}
};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDateTime64, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDateTime64, DataTypeDate32, TransformDateTime64<ToDate32Impl>, false> {};
2021-07-15 11:40:45 +00:00
/// Implementation of toDate32 function.
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2021-07-15 11:40:45 +00:00
struct ToDate32Transform32Or64
{
static constexpr auto name = "toDate32";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl & time_zone)
2021-07-15 11:40:45 +00:00
{
if (from < DATE_LUT_MAX_EXTEND_DAY_NUM)
return static_cast<ToType>(from);
else
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from > MAX_DATETIME64_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type Date32", from);
}
return time_zone.toDayNum(std::min(time_t(from), time_t(MAX_DATETIME64_TIMESTAMP)));
}
2021-07-15 11:40:45 +00:00
}
};
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2021-07-15 11:40:45 +00:00
struct ToDate32Transform32Or64Signed
{
static constexpr auto name = "toDate32";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl & time_zone)
2021-07-15 11:40:45 +00:00
{
2023-05-09 12:18:04 +00:00
static const Int32 daynum_min_offset = -static_cast<Int32>(time_zone.getDayNumOffsetEpoch());
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from < daynum_min_offset || from > MAX_DATETIME64_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type Date32", from);
}
2021-07-15 11:40:45 +00:00
if (from < daynum_min_offset)
return daynum_min_offset;
2021-07-15 11:40:45 +00:00
return (from < DATE_LUT_MAX_EXTEND_DAY_NUM)
2022-09-11 01:21:34 +00:00
? static_cast<ToType>(from)
: time_zone.toDayNum(std::min(time_t(Int64(from)), time_t(MAX_DATETIME64_TIMESTAMP)));
2021-07-15 11:40:45 +00:00
}
};
template <typename FromType, typename ToType>
struct ToDate32Transform8Or16Signed
{
static constexpr auto name = "toDate32";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl &)
2021-07-15 11:40:45 +00:00
{
return from;
}
};
2020-08-07 17:38:42 +00:00
/** Special case of converting Int8, Int16, (U)Int32 or (U)Int64 (and also, for convenience,
* Float32, Float64) to Date. If the
2020-08-07 17:38:42 +00:00
* number is less than 65536, then it is treated as DayNum, and if it's greater or equals to 65536,
* then treated as unix timestamp. If the number exceeds UInt32, saturate to MAX_UINT32 then as DayNum.
* It's a bit illogical, as we actually have two functions in one.
* But allows to support frequent case,
* when user write toDate(UInt32), expecting conversion of unix timestamp to Date.
* (otherwise such usage would be frequent mistake).
2015-10-22 15:31:42 +00:00
*/
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeUInt32, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeUInt32, DataTypeDate, ToDateTransform32Or64<UInt32, UInt16, default_date_time_overflow_behavior>, false> {};
2021-07-15 11:40:45 +00:00
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeUInt64, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeUInt64, DataTypeDate, ToDateTransform32Or64<UInt64, UInt16, default_date_time_overflow_behavior>, false> {};
2020-08-07 17:38:42 +00:00
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt8, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt8, DataTypeDate, ToDateTransform8Or16Signed<Int8, UInt16, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt16, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt16, DataTypeDate, ToDateTransform8Or16Signed<Int16, UInt16, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt32, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt32, DataTypeDate, ToDateTransform32Or64Signed<Int32, UInt16, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt64, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt64, DataTypeDate, ToDateTransform32Or64Signed<Int64, UInt16, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat32, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat32, DataTypeDate, ToDateTransform32Or64Signed<Float32, UInt16, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat64, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat64, DataTypeDate, ToDateTransform32Or64Signed<Float64, UInt16, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeUInt32, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeUInt32, DataTypeDate32, ToDate32Transform32Or64<UInt32, Int32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeUInt64, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeUInt64, DataTypeDate32, ToDate32Transform32Or64<UInt64, Int32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt8, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt8, DataTypeDate32, ToDate32Transform8Or16Signed<Int8, Int32>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt16, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt16, DataTypeDate32, ToDate32Transform8Or16Signed<Int16, Int32>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt32, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt32, DataTypeDate32, ToDate32Transform32Or64Signed<Int32, Int32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt64, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt64, DataTypeDate32, ToDate32Transform32Or64Signed<Int64, Int32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat32, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat32, DataTypeDate32, ToDate32Transform32Or64Signed<Float32, Int32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat64, DataTypeDate32, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat64, DataTypeDate32, ToDate32Transform32Or64Signed<Float64, Int32, default_date_time_overflow_behavior>, false> {};
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2020-08-07 17:38:42 +00:00
struct ToDateTimeTransform64
{
static constexpr auto name = "toDateTime";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl &)
2020-08-07 17:38:42 +00:00
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from > MAX_DATETIME_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type DateTime", from);
}
return static_cast<ToType>(std::min(time_t(from), time_t(MAX_DATETIME_TIMESTAMP)));
2020-08-07 17:38:42 +00:00
}
};
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2020-08-07 17:38:42 +00:00
struct ToDateTimeTransformSigned
{
static constexpr auto name = "toDateTime";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl &)
2020-08-07 17:38:42 +00:00
{
2020-08-07 19:53:52 +00:00
if (from < 0)
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type DateTime", from);
else
return 0;
}
2020-08-07 17:38:42 +00:00
return from;
}
};
template <typename FromType, typename ToType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2020-08-07 17:38:42 +00:00
struct ToDateTimeTransform64Signed
{
static constexpr auto name = "toDateTime";
static NO_SANITIZE_UNDEFINED ToType execute(const FromType & from, const DateLUTImpl &)
2020-08-07 17:38:42 +00:00
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from < 0 || from > MAX_DATETIME_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type DateTime", from);
}
2020-08-07 19:53:52 +00:00
if (from < 0)
return 0;
return static_cast<ToType>(std::min(time_t(from), time_t(MAX_DATETIME_TIMESTAMP)));
2020-08-07 17:38:42 +00:00
}
};
/// Special case of converting Int8, Int16, Int32 or (U)Int64 (and also, for convenience, Float32, Float64) to DateTime.
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt8, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt8, DataTypeDateTime, ToDateTimeTransformSigned<Int8, UInt32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt16, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt16, DataTypeDateTime, ToDateTimeTransformSigned<Int16, UInt32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt32, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt32, DataTypeDateTime, ToDateTimeTransformSigned<Int32, UInt32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt64, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt64, DataTypeDateTime, ToDateTimeTransform64Signed<Int64, UInt32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeUInt64, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeUInt64, DataTypeDateTime, ToDateTimeTransform64<UInt64, UInt32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat32, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat32, DataTypeDateTime, ToDateTimeTransform64Signed<Float32, UInt32, default_date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat64, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat64, DataTypeDateTime, ToDateTimeTransform64Signed<Float64, UInt32, default_date_time_overflow_behavior>, false> {};
/** Conversion of numeric to DateTime64
*/
template <typename FromType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ToDateTime64TransformUnsigned
{
static constexpr auto name = "toDateTime64";
const DateTime64::NativeType scale_multiplier = 1;
ToDateTime64TransformUnsigned(UInt32 scale = 0) /// NOLINT
: scale_multiplier(DecimalUtils::scaleMultiplier<DateTime64::NativeType>(scale))
{}
NO_SANITIZE_UNDEFINED DateTime64::NativeType execute(FromType from, const DateLUTImpl &) const
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from > MAX_DATETIME64_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type DateTime64", from);
else
return DecimalUtils::decimalFromComponentsWithMultiplier<DateTime64>(from, 0, scale_multiplier);
}
else
return DecimalUtils::decimalFromComponentsWithMultiplier<DateTime64>(std::min<time_t>(from, MAX_DATETIME64_TIMESTAMP), 0, scale_multiplier);
}
};
template <typename FromType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ToDateTime64TransformSigned
{
static constexpr auto name = "toDateTime64";
const DateTime64::NativeType scale_multiplier = 1;
ToDateTime64TransformSigned(UInt32 scale = 0) /// NOLINT
: scale_multiplier(DecimalUtils::scaleMultiplier<DateTime64::NativeType>(scale))
{}
NO_SANITIZE_UNDEFINED DateTime64::NativeType execute(FromType from, const DateLUTImpl &) const
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from < MIN_DATETIME64_TIMESTAMP || from > MAX_DATETIME64_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type DateTime64", from);
}
from = static_cast<FromType>(std::max<time_t>(from, MIN_DATETIME64_TIMESTAMP));
from = static_cast<FromType>(std::min<time_t>(from, MAX_DATETIME64_TIMESTAMP));
return DecimalUtils::decimalFromComponentsWithMultiplier<DateTime64>(from, 0, scale_multiplier);
}
};
template <typename FromDataType, typename FromType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
2021-02-21 18:09:51 +00:00
struct ToDateTime64TransformFloat
{
static constexpr auto name = "toDateTime64";
const UInt32 scale = 1;
ToDateTime64TransformFloat(UInt32 scale_ = 0) /// NOLINT
2021-02-21 18:09:51 +00:00
: scale(scale_)
{}
NO_SANITIZE_UNDEFINED DateTime64::NativeType execute(FromType from, const DateLUTImpl &) const
2021-02-21 18:09:51 +00:00
{
if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw)
{
2023-10-26 21:56:45 +00:00
if (from < MIN_DATETIME64_TIMESTAMP || from > MAX_DATETIME64_TIMESTAMP) [[unlikely]]
2023-10-23 13:01:45 +00:00
throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Timestamp value {} is out of bounds of type DateTime64", from);
}
from = std::max(from, static_cast<FromType>(MIN_DATETIME64_TIMESTAMP));
from = std::min(from, static_cast<FromType>(MAX_DATETIME64_TIMESTAMP));
2021-02-21 18:09:51 +00:00
return convertToDecimal<FromDataType, DataTypeDateTime64>(from, scale);
}
};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt8, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt8, DataTypeDateTime64, ToDateTime64TransformSigned<Int8, date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt16, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt16, DataTypeDateTime64, ToDateTime64TransformSigned<Int16, date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt32, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt32, DataTypeDateTime64, ToDateTime64TransformSigned<Int32, date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeInt64, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeInt64, DataTypeDateTime64, ToDateTime64TransformSigned<Int64, date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeUInt64, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeUInt64, DataTypeDateTime64, ToDateTime64TransformUnsigned<UInt64, date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat32, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat32, DataTypeDateTime64, ToDateTime64TransformFloat<DataTypeFloat32, Float32, date_time_overflow_behavior>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeFloat64, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeFloat64, DataTypeDateTime64, ToDateTime64TransformFloat<DataTypeFloat64, Float64, date_time_overflow_behavior>, false> {};
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
/** Conversion of DateTime64 to Date or DateTime: discards fractional part.
*/
template <typename Transform>
struct FromDateTime64Transform
{
static constexpr auto name = Transform::name;
const DateTime64::NativeType scale_multiplier = 1;
FromDateTime64Transform(UInt32 scale) /// NOLINT
: scale_multiplier(DecimalUtils::scaleMultiplier<DateTime64::NativeType>(scale))
{}
auto execute(DateTime64::NativeType dt, const DateLUTImpl & time_zone) const
{
const auto c = DecimalUtils::splitWithScaleMultiplier(DateTime64(dt), scale_multiplier);
return Transform::execute(static_cast<UInt32>(c.whole), time_zone);
}
};
/** Conversion of DateTime64 to Date or DateTime: discards fractional part.
*/
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDateTime64, DataTypeDate, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDateTime64, DataTypeDate, TransformDateTime64<ToDateImpl<date_time_overflow_behavior>>, false> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDateTime64, DataTypeDateTime, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDateTime64, DataTypeDateTime, TransformDateTime64<ToDateTimeImpl<date_time_overflow_behavior>>, false> {};
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
struct ToDateTime64Transform
{
static constexpr auto name = "toDateTime64";
const DateTime64::NativeType scale_multiplier = 1;
ToDateTime64Transform(UInt32 scale = 0) /// NOLINT
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
: scale_multiplier(DecimalUtils::scaleMultiplier<DateTime64::NativeType>(scale))
{}
DateTime64::NativeType execute(UInt16 d, const DateLUTImpl & time_zone) const
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
{
const auto dt = ToDateTimeImpl<>::execute(d, time_zone);
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
return execute(dt, time_zone);
}
DateTime64::NativeType execute(Int32 d, const DateLUTImpl & time_zone) const
{
Int64 dt = static_cast<Int64>(time_zone.fromDayNum(ExtendedDayNum(d)));
return DecimalUtils::decimalFromComponentsWithMultiplier<DateTime64>(dt, 0, scale_multiplier);
}
DateTime64::NativeType execute(UInt32 dt, const DateLUTImpl & /*time_zone*/) const
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
{
return DecimalUtils::decimalFromComponentsWithMultiplier<DateTime64>(dt, 0, scale_multiplier);
}
};
/** Conversion of Date or DateTime to DateTime64: add zero sub-second part.
*/
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDate, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
: DateTimeTransformImpl<DataTypeDate, DataTypeDateTime64, ToDateTime64Transform> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDate32, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: DateTimeTransformImpl<DataTypeDate32, DataTypeDateTime64, ToDateTime64Transform> {};
template <typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct ConvertImpl<DataTypeDateTime, DataTypeDateTime64, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
: DateTimeTransformImpl<DataTypeDateTime, DataTypeDateTime64, ToDateTime64Transform> {};
/** Transformation of numbers, dates, datetimes to strings: through formatting.
2011-10-16 01:57:10 +00:00
*/
template <typename DataType>
struct FormatImpl
{
template <typename ReturnType = void>
static ReturnType execute(const typename DataType::FieldType x, WriteBuffer & wb, const DataType *, const DateLUTImpl *)
{
writeText(x, wb);
return ReturnType(true);
}
};
template <>
struct FormatImpl<DataTypeDate>
{
template <typename ReturnType = void>
static ReturnType execute(const DataTypeDate::FieldType x, WriteBuffer & wb, const DataTypeDate *, const DateLUTImpl * time_zone)
{
writeDateText(DayNum(x), wb, *time_zone);
return ReturnType(true);
}
};
2021-07-15 11:40:45 +00:00
template <>
struct FormatImpl<DataTypeDate32>
{
template <typename ReturnType = void>
static ReturnType execute(const DataTypeDate32::FieldType x, WriteBuffer & wb, const DataTypeDate32 *, const DateLUTImpl * time_zone)
2021-07-15 11:40:45 +00:00
{
writeDateText(ExtendedDayNum(x), wb, *time_zone);
2021-07-15 11:40:45 +00:00
return ReturnType(true);
}
};
template <>
struct FormatImpl<DataTypeDateTime>
{
template <typename ReturnType = void>
static ReturnType execute(const DataTypeDateTime::FieldType x, WriteBuffer & wb, const DataTypeDateTime *, const DateLUTImpl * time_zone)
{
writeDateTimeText(x, wb, *time_zone);
return ReturnType(true);
}
};
template <>
struct FormatImpl<DataTypeDateTime64>
{
template <typename ReturnType = void>
static ReturnType execute(const DataTypeDateTime64::FieldType x, WriteBuffer & wb, const DataTypeDateTime64 * type, const DateLUTImpl * time_zone)
{
writeDateTimeText(DateTime64(x), type->getScale(), wb, *time_zone);
return ReturnType(true);
}
};
template <typename FieldType>
struct FormatImpl<DataTypeEnum<FieldType>>
{
template <typename ReturnType = void>
static ReturnType execute(const FieldType x, WriteBuffer & wb, const DataTypeEnum<FieldType> * type, const DateLUTImpl *)
{
static constexpr bool throw_exception = std::is_same_v<ReturnType, void>;
2011-10-16 03:05:15 +00:00
if constexpr (throw_exception)
{
writeString(type->getNameForValue(x), wb);
}
else
{
StringRef res;
bool is_ok = type->getNameForValue(x, res);
if (is_ok)
writeString(res, wb);
return ReturnType(is_ok);
}
}
};
2011-10-16 03:05:15 +00:00
2018-08-21 18:25:38 +00:00
template <typename FieldType>
struct FormatImpl<DataTypeDecimal<FieldType>>
{
template <typename ReturnType = void>
static ReturnType execute(const FieldType x, WriteBuffer & wb, const DataTypeDecimal<FieldType> * type, const DateLUTImpl *)
2018-08-21 18:25:38 +00:00
{
2021-08-16 08:03:23 +00:00
writeText(x, type->getScale(), wb, false);
return ReturnType(true);
2018-08-21 18:25:38 +00:00
}
};
/// DataTypeEnum<T> to DataType<T> free conversion
template <typename FieldType, typename Name>
struct ConvertImpl<DataTypeEnum<FieldType>, DataTypeNumber<FieldType>, Name, ConvertDefaultBehaviorTag>
{
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/)
{
2020-10-17 14:23:37 +00:00
return arguments[0].column;
}
};
static inline ColumnUInt8::MutablePtr copyNullMap(ColumnPtr col)
{
ColumnUInt8::MutablePtr null_map = nullptr;
if (const auto * col_null = checkAndGetColumn<ColumnNullable>(col.get()))
{
null_map = ColumnUInt8::create();
null_map->insertRangeFrom(col_null->getNullMapColumn(), 0, col_null->size());
}
return null_map;
}
2011-10-16 01:57:10 +00:00
template <typename FromDataType, typename Name>
requires (!std::is_same_v<FromDataType, DataTypeString>)
struct ConvertImpl<FromDataType, DataTypeString, Name, ConvertDefaultBehaviorTag>
2011-10-16 01:57:10 +00:00
{
using FromFieldType = typename FromDataType::FieldType;
2021-09-10 11:49:22 +00:00
using ColVecType = ColumnVectorOrDecimal<FromFieldType>;
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/)
2011-10-16 01:57:10 +00:00
{
2023-09-07 12:41:01 +00:00
if constexpr (IsDataTypeDateOrDateTime<FromDataType>)
2023-09-04 13:30:24 +00:00
{
2023-09-07 12:41:01 +00:00
auto datetime_arg = arguments[0];
2023-09-07 12:41:01 +00:00
const DateLUTImpl * time_zone = nullptr;
const ColumnConst * time_zone_column = nullptr;
2023-09-07 12:41:01 +00:00
if (arguments.size() == 1)
{
2023-09-07 12:41:01 +00:00
auto non_null_args = createBlockWithNestedColumns(arguments);
time_zone = &extractTimeZoneFromFunctionArguments(non_null_args, 1, 0);
}
else /// When we have a column for timezone
{
datetime_arg.column = datetime_arg.column->convertToFullColumnIfConst();
2023-05-09 12:18:04 +00:00
2023-09-07 12:41:01 +00:00
if constexpr (std::is_same_v<FromDataType, DataTypeDate> || std::is_same_v<FromDataType, DataTypeDate32>)
time_zone = &DateLUT::instance();
/// For argument of Date or DateTime type, second argument with time zone could be specified.
if constexpr (std::is_same_v<FromDataType, DataTypeDateTime> || std::is_same_v<FromDataType, DataTypeDateTime64>)
2023-09-06 13:33:11 +00:00
{
2023-09-07 12:41:01 +00:00
if ((time_zone_column = checkAndGetColumnConst<ColumnString>(arguments[1].column.get())))
{
auto non_null_args = createBlockWithNestedColumns(arguments);
time_zone = &extractTimeZoneFromFunctionArguments(non_null_args, 1, 0);
}
2023-09-06 13:33:11 +00:00
}
}
2023-09-07 12:41:01 +00:00
const auto & col_with_type_and_name = columnGetNested(datetime_arg);
2023-09-07 12:41:01 +00:00
if (const auto col_from = checkAndGetColumn<ColVecType>(col_with_type_and_name.column.get()))
{
auto col_to = ColumnString::create();
const typename ColVecType::Container & vec_from = col_from->getData();
ColumnString::Chars & data_to = col_to->getChars();
ColumnString::Offsets & offsets_to = col_to->getOffsets();
size_t size = vec_from.size();
if constexpr (std::is_same_v<FromDataType, DataTypeDate>)
data_to.resize(size * (strlen("YYYY-MM-DD") + 1));
else if constexpr (std::is_same_v<FromDataType, DataTypeDate32>)
data_to.resize(size * (strlen("YYYY-MM-DD") + 1));
else if constexpr (std::is_same_v<FromDataType, DataTypeDateTime>)
data_to.resize(size * (strlen("YYYY-MM-DD hh:mm:ss") + 1));
else if constexpr (std::is_same_v<FromDataType, DataTypeDateTime64>)
data_to.resize(size * (strlen("YYYY-MM-DD hh:mm:ss.") + col_from->getScale() + 1));
else
data_to.resize(size * 3); /// Arbitrary
2023-09-07 12:41:01 +00:00
offsets_to.resize(size);
2023-09-07 12:41:01 +00:00
WriteBufferFromVector<ColumnString::Chars> write_buffer(data_to);
const auto & type = static_cast<const FromDataType &>(*col_with_type_and_name.type);
2023-09-07 12:41:01 +00:00
ColumnUInt8::MutablePtr null_map = copyNullMap(datetime_arg.column);
2023-09-07 12:41:01 +00:00
if (null_map)
{
2023-09-07 12:41:01 +00:00
for (size_t i = 0; i < size; ++i)
{
2023-09-07 12:41:01 +00:00
if (!time_zone_column && arguments.size() > 1)
{
if (!arguments[1].column.get()->getDataAt(i).toString().empty())
time_zone = &DateLUT::instance(arguments[1].column.get()->getDataAt(i).toString());
else
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Provided time zone must be non-empty");
}
bool is_ok = FormatImpl<FromDataType>::template execute<bool>(vec_from[i], write_buffer, &type, time_zone);
null_map->getData()[i] |= !is_ok;
writeChar(0, write_buffer);
offsets_to[i] = write_buffer.count();
}
}
else
{
for (size_t i = 0; i < size; ++i)
{
if (!time_zone_column && arguments.size() > 1)
{
if (!arguments[1].column.get()->getDataAt(i).toString().empty())
time_zone = &DateLUT::instance(arguments[1].column.get()->getDataAt(i).toString());
2023-09-07 12:41:01 +00:00
else
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Provided time zone must be non-empty");
}
FormatImpl<FromDataType>::template execute<void>(vec_from[i], write_buffer, &type, time_zone);
writeChar(0, write_buffer);
offsets_to[i] = write_buffer.count();
}
}
2023-09-07 12:41:01 +00:00
write_buffer.finalize();
if (null_map)
return ColumnNullable::create(std::move(col_to), std::move(null_map));
return col_to;
}
else
2023-09-07 12:41:01 +00:00
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
arguments[0].column->getName(), Name::name);
}
else
{
ColumnUInt8::MutablePtr null_map = copyNullMap(arguments[0].column);
const auto & col_with_type_and_name = columnGetNested(arguments[0]);
2023-09-07 12:41:01 +00:00
const auto & type = static_cast<const FromDataType &>(*col_with_type_and_name.type);
if (const auto col_from = checkAndGetColumn<ColVecType>(col_with_type_and_name.column.get()))
{
2023-09-07 12:41:01 +00:00
auto col_to = ColumnString::create();
const typename ColVecType::Container & vec_from = col_from->getData();
ColumnString::Chars & data_to = col_to->getChars();
ColumnString::Offsets & offsets_to = col_to->getOffsets();
size_t size = vec_from.size();
data_to.resize(size * 3);
2023-09-07 12:41:01 +00:00
offsets_to.resize(size);
WriteBufferFromVector<ColumnString::Chars> write_buffer(data_to);
if (null_map)
{
2023-09-07 12:41:01 +00:00
for (size_t i = 0; i < size; ++i)
{
2023-09-08 13:36:33 +00:00
bool is_ok = FormatImpl<FromDataType>::template execute<bool>(vec_from[i], write_buffer, &type, nullptr);
/// We don't use timezones in this branch
2023-09-07 12:41:01 +00:00
null_map->getData()[i] |= !is_ok;
writeChar(0, write_buffer);
offsets_to[i] = write_buffer.count();
}
}
else
{
for (size_t i = 0; i < size; ++i)
{
2023-09-08 13:36:33 +00:00
FormatImpl<FromDataType>::template execute<void>(vec_from[i], write_buffer, &type, nullptr);
2023-09-07 12:41:01 +00:00
writeChar(0, write_buffer);
offsets_to[i] = write_buffer.count();
}
}
2023-09-07 12:41:01 +00:00
write_buffer.finalize();
2023-09-07 12:41:01 +00:00
if (null_map)
return ColumnNullable::create(std::move(col_to), std::move(null_map));
return col_to;
}
else
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
arguments[0].column->getName(), Name::name);
2011-10-16 01:57:10 +00:00
}
}
};
/// Generic conversion of any type to String or FixedString via serialization to text.
template <typename StringColumnType>
struct ConvertImplGenericToString
{
2021-09-29 16:42:41 +00:00
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t /*input_rows_count*/)
{
static_assert(std::is_same_v<StringColumnType, ColumnString> || std::is_same_v<StringColumnType, ColumnFixedString>,
"Can be used only to serialize to ColumnString or ColumnFixedString");
2021-07-12 10:15:30 +00:00
ColumnUInt8::MutablePtr null_map = copyNullMap(arguments[0].column);
const auto & col_with_type_and_name = columnGetNested(arguments[0]);
const IDataType & type = *col_with_type_and_name.type;
const IColumn & col_from = *col_with_type_and_name.column;
2021-09-29 16:42:41 +00:00
size_t size = col_from.size();
auto col_to = removeNullable(result_type)->createColumn();
{
ColumnStringHelpers::WriteHelper write_helper(
assert_cast<StringColumnType &>(*col_to),
2021-09-29 16:42:41 +00:00
size);
auto & write_buffer = write_helper.getWriteBuffer();
FormatSettings format_settings;
auto serialization = type.getDefaultSerialization();
2023-11-15 15:53:38 +00:00
for (size_t row = 0; row < size; ++row)
{
2023-11-15 15:53:38 +00:00
serialization->serializeText(col_from, row, write_buffer, format_settings);
write_helper.rowWritten();
}
2021-09-29 16:42:41 +00:00
write_helper.finalize();
}
2021-07-12 10:15:30 +00:00
if (result_type->isNullable() && null_map)
return ColumnNullable::create(std::move(col_to), std::move(null_map));
2020-10-17 14:23:37 +00:00
return col_to;
}
};
/** Conversion of time_t to UInt16, Int32, UInt32
*/
template <typename DataType>
void convertFromTime(typename DataType::FieldType & x, time_t & time)
{
x = time;
}
template <>
inline void convertFromTime<DataTypeDate>(DataTypeDate::FieldType & x, time_t & time)
{
if (unlikely(time < 0))
x = 0;
else if (unlikely(time > 0xFFFF))
x = 0xFFFF;
else
x = time;
}
template <>
inline void convertFromTime<DataTypeDate32>(DataTypeDate32::FieldType & x, time_t & time)
{
x = static_cast<UInt32>(time);
}
template <>
inline void convertFromTime<DataTypeDateTime>(DataTypeDateTime::FieldType & x, time_t & time)
{
if (unlikely(time < 0))
x = 0;
else if (unlikely(time > MAX_DATETIME_TIMESTAMP))
x = MAX_DATETIME_TIMESTAMP;
else
x = static_cast<UInt32>(time);
}
/** Conversion of strings to numbers, dates, datetimes: through parsing.
*/
2023-08-01 16:29:44 +00:00
template <typename DataType>
void parseImpl(typename DataType::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool precise_float_parsing)
2023-07-30 17:42:10 +00:00
{
if constexpr (std::is_floating_point_v<typename DataType::FieldType>)
2023-07-31 14:26:18 +00:00
{
2023-08-01 16:29:44 +00:00
if (precise_float_parsing)
2023-07-31 14:26:18 +00:00
readFloatTextPrecise(x, rb);
else
readFloatTextFast(x, rb);
}
2023-07-30 17:42:10 +00:00
else
2023-08-01 16:29:44 +00:00
readText(x, rb);
}
template <>
2023-08-01 16:29:44 +00:00
inline void parseImpl<DataTypeDate>(DataTypeDate::FieldType & x, ReadBuffer & rb, const DateLUTImpl * time_zone, bool)
2011-10-16 03:05:15 +00:00
{
DayNum tmp(0);
2023-05-08 20:28:31 +00:00
readDateText(tmp, rb, *time_zone);
2011-10-16 03:05:15 +00:00
x = tmp;
}
template <>
2023-08-01 16:29:44 +00:00
inline void parseImpl<DataTypeDate32>(DataTypeDate32::FieldType & x, ReadBuffer & rb, const DateLUTImpl * time_zone, bool)
{
ExtendedDayNum tmp(0);
2023-05-08 20:28:31 +00:00
readDateText(tmp, rb, *time_zone);
x = tmp;
}
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
// NOTE: no need of extra overload of DateTime64, since readDateTimeText64 has different signature and that case is explicitly handled in the calling code.
template <>
2023-08-01 16:29:44 +00:00
inline void parseImpl<DataTypeDateTime>(DataTypeDateTime::FieldType & x, ReadBuffer & rb, const DateLUTImpl * time_zone, bool)
2011-10-16 03:05:15 +00:00
{
2021-03-15 20:40:33 +00:00
time_t time = 0;
readDateTimeText(time, rb, *time_zone);
convertFromTime<DataTypeDateTime>(x, time);
2011-10-16 03:05:15 +00:00
}
2018-07-16 00:28:44 +00:00
template <>
2023-08-01 16:29:44 +00:00
inline void parseImpl<DataTypeUUID>(DataTypeUUID::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool)
2017-07-06 14:42:27 +00:00
{
UUID tmp;
readUUIDText(tmp, rb);
2021-04-25 09:30:43 +00:00
x = tmp.toUnderType();
2017-07-06 14:42:27 +00:00
}
template <>
2023-08-01 16:29:44 +00:00
inline void parseImpl<DataTypeIPv4>(DataTypeIPv4::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool)
{
IPv4 tmp;
readIPv4Text(tmp, rb);
x = tmp.toUnderType();
}
template <>
2023-08-01 16:29:44 +00:00
inline void parseImpl<DataTypeIPv6>(DataTypeIPv6::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool)
{
IPv6 tmp;
readIPv6Text(tmp, rb);
x = tmp;
}
2023-08-01 16:29:44 +00:00
template <typename DataType>
bool tryParseImpl(typename DataType::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool precise_float_parsing)
{
2019-06-16 18:12:14 +00:00
if constexpr (std::is_floating_point_v<typename DataType::FieldType>)
2023-07-31 14:26:18 +00:00
{
2023-08-01 16:29:44 +00:00
if (precise_float_parsing)
2023-07-31 14:26:18 +00:00
return tryReadFloatTextPrecise(x, rb);
else
return tryReadFloatTextFast(x, rb);
}
else /*if constexpr (is_integer_v<typename DataType::FieldType>)*/
2023-08-01 16:29:44 +00:00
return tryReadIntText(x, rb);
}
template <>
2023-08-01 16:29:44 +00:00
inline bool tryParseImpl<DataTypeDate>(DataTypeDate::FieldType & x, ReadBuffer & rb, const DateLUTImpl * time_zone, bool)
{
DayNum tmp(0);
2023-05-08 20:28:31 +00:00
if (!tryReadDateText(tmp, rb, *time_zone))
return false;
x = tmp;
return true;
}
template <>
2023-08-01 16:29:44 +00:00
inline bool tryParseImpl<DataTypeDate32>(DataTypeDate32::FieldType & x, ReadBuffer & rb, const DateLUTImpl * time_zone, bool)
{
ExtendedDayNum tmp(0);
2023-05-08 20:28:31 +00:00
if (!tryReadDateText(tmp, rb, *time_zone))
return false;
x = tmp;
return true;
}
template <>
2023-08-01 16:29:44 +00:00
inline bool tryParseImpl<DataTypeDateTime>(DataTypeDateTime::FieldType & x, ReadBuffer & rb, const DateLUTImpl * time_zone, bool)
{
time_t tmp = 0;
if (!tryReadDateTimeText(tmp, rb, *time_zone))
return false;
x = static_cast<UInt32>(tmp);
return true;
}
template <>
2023-08-01 16:29:44 +00:00
inline bool tryParseImpl<DataTypeUUID>(DataTypeUUID::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool)
{
UUID tmp;
if (!tryReadUUIDText(tmp, rb))
return false;
2021-04-25 09:30:43 +00:00
x = tmp.toUnderType();
return true;
}
template <>
2023-08-01 16:29:44 +00:00
inline bool tryParseImpl<DataTypeIPv4>(DataTypeIPv4::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool)
{
IPv4 tmp;
if (!tryReadIPv4Text(tmp, rb))
return false;
x = tmp.toUnderType();
return true;
}
template <>
2023-08-01 16:29:44 +00:00
inline bool tryParseImpl<DataTypeIPv6>(DataTypeIPv6::FieldType & x, ReadBuffer & rb, const DateLUTImpl *, bool)
{
IPv6 tmp;
if (!tryReadIPv6Text(tmp, rb))
return false;
x = tmp;
return true;
}
/** Throw exception with verbose message when string value is not parsed completely.
*/
[[noreturn]] inline void throwExceptionForIncompletelyParsedValue(ReadBuffer & read_buffer, const IDataType & result_type)
{
WriteBufferFromOwnString message_buf;
message_buf << "Cannot parse string " << quote << String(read_buffer.buffer().begin(), read_buffer.buffer().size())
<< " as " << result_type.getName()
<< ": syntax error";
if (read_buffer.offset())
message_buf << " at position " << read_buffer.offset()
<< " (parsed just " << quote << String(read_buffer.buffer().begin(), read_buffer.offset()) << ")";
else
message_buf << " at begin of string";
// Currently there are no functions toIPv{4,6}Or{Null,Zero}
if (isNativeNumber(result_type) && !(result_type.getName() == "IPv4" || result_type.getName() == "IPv6"))
message_buf << ". Note: there are to" << result_type.getName() << "OrZero and to" << result_type.getName() << "OrNull functions, which returns zero/NULL instead of throwing exception.";
throw Exception(PreformattedMessage{message_buf.str(), "Cannot parse string {} as {}: syntax error {}"}, ErrorCodes::CANNOT_PARSE_TEXT);
}
enum class ConvertFromStringExceptionMode
{
Throw, /// Throw exception if value cannot be parsed.
Zero, /// Fill with zero or default if value cannot be parsed.
Null /// Return ColumnNullable with NULLs when value cannot be parsed.
};
enum class ConvertFromStringParsingMode
{
Normal,
BestEffort, /// Only applicable for DateTime. Will use sophisticated method, that is slower.
BestEffortUS
};
template <typename FromDataType, typename ToDataType, typename Name,
ConvertFromStringExceptionMode exception_mode, ConvertFromStringParsingMode parsing_mode>
struct ConvertThroughParsing
2011-10-16 01:57:10 +00:00
{
static_assert(std::is_same_v<FromDataType, DataTypeString> || std::is_same_v<FromDataType, DataTypeFixedString>,
2017-12-25 04:10:43 +00:00
"ConvertThroughParsing is only applicable for String or FixedString data types");
static constexpr bool to_datetime64 = std::is_same_v<ToDataType, DataTypeDateTime64>;
static bool isAllRead(ReadBuffer & in)
{
/// In case of FixedString, skip zero bytes at end.
if constexpr (std::is_same_v<FromDataType, DataTypeFixedString>)
while (!in.eof() && *in.position() == 0)
++in.position();
if (in.eof())
return true;
/// Special case, that allows to parse string with DateTime or DateTime64 as Date or Date32.
if constexpr (std::is_same_v<ToDataType, DataTypeDate> || std::is_same_v<ToDataType, DataTypeDate32>)
{
if (!in.eof() && (*in.position() == ' ' || *in.position() == 'T'))
{
if (in.buffer().size() == strlen("YYYY-MM-DD hh:mm:ss"))
return true;
if (in.buffer().size() >= strlen("YYYY-MM-DD hh:mm:ss.x")
&& in.buffer().begin()[19] == '.')
{
in.position() = in.buffer().begin() + 20;
while (!in.eof() && isNumericASCII(*in.position()))
++in.position();
if (in.eof())
return true;
}
}
}
return false;
}
2018-08-31 08:59:21 +00:00
template <typename Additions = void *>
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr & res_type, size_t input_rows_count,
2018-08-31 08:59:21 +00:00
Additions additions [[maybe_unused]] = Additions())
2011-10-16 01:57:10 +00:00
{
using ColVecTo = typename ToDataType::ColumnType;
const DateLUTImpl * local_time_zone [[maybe_unused]] = nullptr;
const DateLUTImpl * utc_time_zone [[maybe_unused]] = nullptr;
2023-05-09 12:18:04 +00:00
/// For conversion to Date or DateTime type, second argument with time zone could be specified.
if constexpr (std::is_same_v<ToDataType, DataTypeDateTime> || to_datetime64)
{
2020-10-17 14:23:37 +00:00
const auto result_type = removeNullable(res_type);
2020-08-08 00:47:03 +00:00
// Time zone is already figured out during result type resolution, no need to do it here.
if (const auto dt_col = checkAndGetDataType<ToDataType>(result_type.get()))
local_time_zone = &dt_col->getTimeZone();
else
2020-10-17 14:23:37 +00:00
local_time_zone = &extractTimeZoneFromFunctionArguments(arguments, 1, 0);
if constexpr (parsing_mode == ConvertFromStringParsingMode::BestEffort || parsing_mode == ConvertFromStringParsingMode::BestEffortUS)
utc_time_zone = &DateLUT::instance("UTC");
}
2023-05-09 12:18:04 +00:00
else if constexpr (std::is_same_v<ToDataType, DataTypeDate> || std::is_same_v<ToDataType, DataTypeDate32>)
{
// Timezone is more or less dummy when parsing Date/Date32 from string.
local_time_zone = &DateLUT::instance();
utc_time_zone = &DateLUT::instance("UTC");
}
2020-10-17 14:23:37 +00:00
const IColumn * col_from = arguments[0].column.get();
const ColumnString * col_from_string = checkAndGetColumn<ColumnString>(col_from);
const ColumnFixedString * col_from_fixed_string = checkAndGetColumn<ColumnFixedString>(col_from);
if (std::is_same_v<FromDataType, DataTypeString> && !col_from_string)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
col_from->getName(), Name::name);
if (std::is_same_v<FromDataType, DataTypeFixedString> && !col_from_fixed_string)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
col_from->getName(), Name::name);
2018-04-24 07:16:39 +00:00
size_t size = input_rows_count;
typename ColVecTo::MutablePtr col_to = nullptr;
if constexpr (IsDataTypeDecimal<ToDataType>)
2018-08-21 18:25:38 +00:00
{
2018-08-31 08:59:21 +00:00
UInt32 scale = additions;
if constexpr (to_datetime64)
{
ToDataType check_bounds_in_ctor(scale, local_time_zone ? local_time_zone->getTimeZone() : String{});
}
else
{
ToDataType check_bounds_in_ctor(ToDataType::maxPrecision(), scale);
}
2018-08-31 08:59:21 +00:00
col_to = ColVecTo::create(size, scale);
2018-08-21 18:25:38 +00:00
}
else
col_to = ColVecTo::create(size);
typename ColVecTo::Container & vec_to = col_to->getData();
ColumnUInt8::MutablePtr col_null_map_to;
2017-12-25 07:18:27 +00:00
ColumnUInt8::Container * vec_null_map_to [[maybe_unused]] = nullptr;
if constexpr (exception_mode == ConvertFromStringExceptionMode::Null)
2011-10-16 03:05:15 +00:00
{
col_null_map_to = ColumnUInt8::create(size);
vec_null_map_to = &col_null_map_to->getData();
}
const ColumnString::Chars * chars = nullptr;
const IColumn::Offsets * offsets = nullptr;
size_t fixed_string_size = 0;
if constexpr (std::is_same_v<FromDataType, DataTypeString>)
{
chars = &col_from_string->getChars();
offsets = &col_from_string->getOffsets();
}
else
{
chars = &col_from_fixed_string->getChars();
fixed_string_size = col_from_fixed_string->getN();
}
size_t current_offset = 0;
2023-07-30 17:42:10 +00:00
bool precise_float_parsing = false;
if (DB::CurrentThread::isInitialized())
{
const DB::ContextPtr query_context = DB::CurrentThread::get().getQueryContext();
if (query_context)
precise_float_parsing = query_context->getSettingsRef().precise_float_parsing;
}
for (size_t i = 0; i < size; ++i)
{
size_t next_offset = std::is_same_v<FromDataType, DataTypeString> ? (*offsets)[i] : (current_offset + fixed_string_size);
size_t string_size = std::is_same_v<FromDataType, DataTypeString> ? next_offset - current_offset - 1 : fixed_string_size;
ReadBufferFromMemory read_buffer(&(*chars)[current_offset], string_size);
if constexpr (exception_mode == ConvertFromStringExceptionMode::Throw)
{
if constexpr (parsing_mode == ConvertFromStringParsingMode::BestEffort)
{
if constexpr (to_datetime64)
{
DateTime64 res = 0;
2022-01-27 10:07:53 +00:00
parseDateTime64BestEffort(res, col_to->getScale(), read_buffer, *local_time_zone, *utc_time_zone);
vec_to[i] = res;
}
else
{
time_t res;
parseDateTimeBestEffort(res, read_buffer, *local_time_zone, *utc_time_zone);
convertFromTime<ToDataType>(vec_to[i], res);
}
}
else if constexpr (parsing_mode == ConvertFromStringParsingMode::BestEffortUS)
{
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
if constexpr (to_datetime64)
{
DateTime64 res = 0;
2022-01-27 10:07:53 +00:00
parseDateTime64BestEffortUS(res, col_to->getScale(), read_buffer, *local_time_zone, *utc_time_zone);
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
vec_to[i] = res;
}
else
{
time_t res;
parseDateTimeBestEffortUS(res, read_buffer, *local_time_zone, *utc_time_zone);
convertFromTime<ToDataType>(vec_to[i], res);
Extended range of DateTime64 to years 1925 - 2238 The Year 1925 is a starting point because most of the timezones switched to saner (mostly 15-minutes based) offsets somewhere during 1924 or before. And that significantly simplifies implementation. 2238 is to simplify arithmetics for sanitizing LUT index access; there are less than 0x1ffff days from 1925. * Extended DateLUTImpl internal LUT to 0x1ffff items, some of which represent negative (pre-1970) time values. As a collateral benefit, Date now correctly supports dates up to 2149 (instead of 2106). * Added a new strong typedef ExtendedDayNum, which represents dates pre-1970 and post 2149. * Functions that used to return DayNum now return ExtendedDayNum. * Refactored DateLUTImpl to untie DayNum from the dual role of being a value and an index (due to negative time). Index is now a different type LUTIndex with explicit conversion functions from DatNum, time_t, and ExtendedDayNum. * Updated DateLUTImpl to properly support values close to epoch start (1970-01-01 00:00), including negative ones. * Reduced resolution of DateLUTImpl::Values::time_at_offset_change to multiple of 15-minutes to allow storing 64-bits of time_t in DateLUTImpl::Value while keeping same size. * Minor performance updates to DateLUTImpl when building month LUT by skipping non-start-of-month days. * Fixed extractTimeZoneFromFunctionArguments to work correctly with DateTime64. * New unit-tests and stateless integration tests for both DateTime and DateTime64.
2020-04-17 13:26:44 +00:00
}
}
else
{
if constexpr (to_datetime64)
{
DateTime64 value = 0;
2022-01-27 10:07:53 +00:00
readDateTime64Text(value, col_to->getScale(), read_buffer, *local_time_zone);
vec_to[i] = value;
}
else if constexpr (IsDataTypeDecimal<ToDataType>)
{
2021-06-17 22:42:33 +00:00
SerializationDecimal<typename ToDataType::FieldType>::readText(
2022-01-27 10:07:53 +00:00
vec_to[i], read_buffer, ToDataType::maxPrecision(), col_to->getScale());
}
else
2021-07-15 11:40:45 +00:00
{
2022-11-29 01:07:25 +00:00
/// we want to utilize constexpr condition here, which is not mixable with value comparison
do
{
if constexpr (std::is_same_v<FromDataType, DataTypeFixedString> && std::is_same_v<ToDataType, DataTypeIPv6>)
{
if (fixed_string_size == IPV6_BINARY_LENGTH)
{
readBinary(vec_to[i], read_buffer);
break;
}
}
2023-08-01 16:29:44 +00:00
parseImpl<ToDataType>(vec_to[i], read_buffer, local_time_zone, precise_float_parsing);
2022-11-29 01:07:25 +00:00
} while (false);
2021-07-15 11:40:45 +00:00
}
}
if (!isAllRead(read_buffer))
throwExceptionForIncompletelyParsedValue(read_buffer, *res_type);
}
else
{
bool parsed;
if constexpr (parsing_mode == ConvertFromStringParsingMode::BestEffort)
{
if constexpr (to_datetime64)
{
DateTime64 res = 0;
2022-01-27 10:07:53 +00:00
parsed = tryParseDateTime64BestEffort(res, col_to->getScale(), read_buffer, *local_time_zone, *utc_time_zone);
vec_to[i] = res;
}
else
{
time_t res;
parsed = tryParseDateTimeBestEffort(res, read_buffer, *local_time_zone, *utc_time_zone);
convertFromTime<ToDataType>(vec_to[i],res);
}
}
else if constexpr (parsing_mode == ConvertFromStringParsingMode::BestEffortUS)
{
2022-08-09 02:32:34 +00:00
if constexpr (to_datetime64)
{
DateTime64 res = 0;
parsed = tryParseDateTime64BestEffortUS(res, col_to->getScale(), read_buffer, *local_time_zone, *utc_time_zone);
vec_to[i] = res;
}
else
{
time_t res;
parsed = tryParseDateTimeBestEffortUS(res, read_buffer, *local_time_zone, *utc_time_zone);
convertFromTime<ToDataType>(vec_to[i],res);
}
}
else
{
if constexpr (to_datetime64)
{
DateTime64 value = 0;
2022-01-27 10:07:53 +00:00
parsed = tryReadDateTime64Text(value, col_to->getScale(), read_buffer, *local_time_zone);
vec_to[i] = value;
}
else if constexpr (IsDataTypeDecimal<ToDataType>)
{
2021-06-17 22:42:33 +00:00
parsed = SerializationDecimal<typename ToDataType::FieldType>::tryReadText(
2022-01-27 10:07:53 +00:00
vec_to[i], read_buffer, ToDataType::maxPrecision(), col_to->getScale());
}
else
{
2022-11-29 01:07:25 +00:00
/// we want to utilize constexpr condition here, which is not mixable with value comparison
do
{
if constexpr (std::is_same_v<FromDataType, DataTypeFixedString> && std::is_same_v<ToDataType, DataTypeIPv6>)
{
if (fixed_string_size == IPV6_BINARY_LENGTH)
{
readBinary(vec_to[i], read_buffer);
parsed = true;
break;
}
}
2023-08-01 16:29:44 +00:00
parsed = tryParseImpl<ToDataType>(vec_to[i], read_buffer, local_time_zone, precise_float_parsing);
2022-11-29 01:07:25 +00:00
} while (false);
}
}
2021-06-17 22:42:33 +00:00
if (!isAllRead(read_buffer))
parsed = false;
if (!parsed)
2021-07-15 11:40:45 +00:00
{
if constexpr (std::is_same_v<ToDataType, DataTypeDate32>)
{
vec_to[i] = -static_cast<Int32>(DateLUT::instance().getDayNumOffsetEpoch());
}
else
{
vec_to[i] = static_cast<typename ToDataType::FieldType>(0);
}
}
if constexpr (exception_mode == ConvertFromStringExceptionMode::Null)
(*vec_null_map_to)[i] = !parsed;
2011-10-16 03:05:15 +00:00
}
current_offset = next_offset;
2011-10-16 03:05:15 +00:00
}
if constexpr (exception_mode == ConvertFromStringExceptionMode::Null)
2020-10-17 14:23:37 +00:00
return ColumnNullable::create(std::move(col_to), std::move(col_null_map_to));
else
2020-10-20 15:56:05 +00:00
return col_to;
}
};
template <typename ToDataType, typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
requires (!std::is_same_v<ToDataType, DataTypeString>)
struct ConvertImpl<DataTypeString, ToDataType, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: ConvertThroughParsing<DataTypeString, ToDataType, Name, ConvertFromStringExceptionMode::Throw, ConvertFromStringParsingMode::Normal> {};
template <typename ToDataType, typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
requires (!std::is_same_v<ToDataType, DataTypeFixedString>)
struct ConvertImpl<DataTypeFixedString, ToDataType, Name, ConvertDefaultBehaviorTag, date_time_overflow_behavior>
: ConvertThroughParsing<DataTypeFixedString, ToDataType, Name, ConvertFromStringExceptionMode::Throw, ConvertFromStringParsingMode::Normal> {};
2011-10-16 01:57:10 +00:00
template <typename ToDataType, typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
requires (!std::is_same_v<ToDataType, DataTypeString>)
struct ConvertImpl<DataTypeString, ToDataType, Name, ConvertReturnNullOnErrorTag, date_time_overflow_behavior>
: ConvertThroughParsing<DataTypeString, ToDataType, Name, ConvertFromStringExceptionMode::Null, ConvertFromStringParsingMode::Normal> {};
template <typename ToDataType, typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
requires (!std::is_same_v<ToDataType, DataTypeFixedString>)
struct ConvertImpl<DataTypeFixedString, ToDataType, Name, ConvertReturnNullOnErrorTag, date_time_overflow_behavior>
: ConvertThroughParsing<DataTypeFixedString, ToDataType, Name, ConvertFromStringExceptionMode::Null, ConvertFromStringParsingMode::Normal> {};
template <typename FromDataType, typename ToDataType, typename Name, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
requires (is_any_of<FromDataType, DataTypeString, DataTypeFixedString> && is_any_of<ToDataType, DataTypeIPv4, DataTypeIPv6>)
struct ConvertImpl<FromDataType, ToDataType, Name, ConvertReturnZeroOnErrorTag, date_time_overflow_behavior>
: ConvertThroughParsing<FromDataType, ToDataType, Name, ConvertFromStringExceptionMode::Zero, ConvertFromStringParsingMode::Normal> {};
/// Generic conversion of any type from String. Used for complex types: Array and Tuple or types with custom serialization.
template <typename StringColumnType>
struct ConvertImplGenericFromString
{
static ColumnPtr execute(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable * column_nullable, size_t input_rows_count)
{
static_assert(std::is_same_v<StringColumnType, ColumnString> || std::is_same_v<StringColumnType, ColumnFixedString>,
"Can be used only to parse from ColumnString or ColumnFixedString");
const IColumn & column_from = *arguments[0].column;
2020-10-17 14:23:37 +00:00
const IDataType & data_type_to = *result_type;
auto res = data_type_to.createColumn();
auto serialization = data_type_to.getDefaultSerialization();
const auto * null_map = column_nullable ? &column_nullable->getNullMapData() : nullptr;
executeImpl(column_from, *res, *serialization, input_rows_count, null_map, result_type.get());
return res;
}
static void executeImpl(
const IColumn & column_from,
IColumn & column_to,
const ISerialization & serialization_from,
size_t input_rows_count,
const PaddedPODArray<UInt8> * null_map = nullptr,
const IDataType * result_type = nullptr)
{
static_assert(std::is_same_v<StringColumnType, ColumnString> || std::is_same_v<StringColumnType, ColumnFixedString>,
"Can be used only to parse from ColumnString or ColumnFixedString");
if (const StringColumnType * col_from_string = checkAndGetColumn<StringColumnType>(&column_from))
{
column_to.reserve(input_rows_count);
FormatSettings format_settings;
for (size_t i = 0; i < input_rows_count; ++i)
{
if (null_map && (*null_map)[i])
{
column_to.insertDefault();
continue;
}
const auto & val = col_from_string->getDataAt(i);
ReadBufferFromMemory read_buffer(val.data, val.size);
try
{
serialization_from.deserializeWholeText(column_to, read_buffer, format_settings);
}
catch (const Exception & e)
{
auto * nullable_column = typeid_cast<ColumnNullable *>(&column_to);
if (e.code() == ErrorCodes::CANNOT_PARSE_BOOL && nullable_column)
{
auto & col_nullmap = nullable_column->getNullMapData();
if (col_nullmap.size() != nullable_column->size())
2023-10-23 11:01:53 +00:00
col_nullmap.resize_fill(nullable_column->size());
if (nullable_column->size() == (i + 1))
nullable_column->popBack(1);
nullable_column->insertDefault();
continue;
}
throw;
}
if (!read_buffer.eof())
{
if (result_type)
throwExceptionForIncompletelyParsedValue(read_buffer, *result_type);
else
throw Exception(ErrorCodes::CANNOT_PARSE_TEXT,
"Cannot parse string to column {}. Expected eof", column_to.getName());
}
}
}
else
throw Exception(ErrorCodes::ILLEGAL_COLUMN,
"Illegal column {} of first argument of conversion function from string",
column_from.getName());
}
};
2016-07-31 03:53:16 +00:00
template <>
struct ConvertImpl<DataTypeString, DataTypeUInt32, NameToUnixTimestamp, ConvertDefaultBehaviorTag>
: ConvertImpl<DataTypeString, DataTypeDateTime, NameToUnixTimestamp, ConvertDefaultBehaviorTag> {};
2020-12-24 00:13:53 +00:00
template <>
struct ConvertImpl<DataTypeString, DataTypeUInt32, NameToUnixTimestamp, ConvertReturnNullOnErrorTag>
: ConvertImpl<DataTypeString, DataTypeDateTime, NameToUnixTimestamp, ConvertReturnNullOnErrorTag> {};
2016-07-31 03:53:16 +00:00
/** If types are identical, just take reference to column.
2011-10-16 03:05:15 +00:00
*/
template <typename T, typename Name>
requires (!T::is_parametric)
struct ConvertImpl<T, T, Name, ConvertDefaultBehaviorTag>
2011-10-16 01:57:10 +00:00
{
2020-11-05 19:09:17 +00:00
template <typename Additions = void *>
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/,
Additions additions [[maybe_unused]] = Additions())
2011-10-16 01:57:10 +00:00
{
2020-10-17 14:23:37 +00:00
return arguments[0].column;
2011-10-16 01:57:10 +00:00
}
};
2021-12-20 23:59:08 +00:00
template <typename Name>
struct ConvertImpl<DataTypeUInt8, DataTypeUInt8, Name, ConvertDefaultBehaviorTag>
{
template <typename Additions = void *>
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/,
Additions additions [[maybe_unused]] = Additions())
{
return arguments[0].column;
}
};
2011-10-16 01:57:10 +00:00
2016-07-31 03:53:16 +00:00
/** Conversion from FixedString to String.
* Cutting sequences of zero bytes from end of strings.
*/
template <typename Name>
struct ConvertImpl<DataTypeFixedString, DataTypeString, Name, ConvertDefaultBehaviorTag>
{
static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr & return_type, size_t /*input_rows_count*/)
{
ColumnUInt8::MutablePtr null_map = copyNullMap(arguments[0].column);
const auto & nested = columnGetNested(arguments[0]);
if (const ColumnFixedString * col_from = checkAndGetColumn<ColumnFixedString>(nested.column.get()))
{
auto col_to = ColumnString::create();
const ColumnFixedString::Chars & data_from = col_from->getChars();
ColumnString::Chars & data_to = col_to->getChars();
ColumnString::Offsets & offsets_to = col_to->getOffsets();
size_t size = col_from->size();
size_t n = col_from->getN();
data_to.resize(size * (n + 1)); /// + 1 - zero terminator
offsets_to.resize(size);
size_t offset_from = 0;
size_t offset_to = 0;
for (size_t i = 0; i < size; ++i)
{
if (!null_map || !null_map->getData()[i])
{
size_t bytes_to_copy = n;
while (bytes_to_copy > 0 && data_from[offset_from + bytes_to_copy - 1] == 0)
--bytes_to_copy;
memcpy(&data_to[offset_to], &data_from[offset_from], bytes_to_copy);
offset_to += bytes_to_copy;
}
data_to[offset_to] = 0;
++offset_to;
offsets_to[i] = offset_to;
offset_from += n;
}
data_to.resize(offset_to);
if (return_type->isNullable() && null_map)
return ColumnNullable::create(std::move(col_to), std::move(null_map));
2020-10-17 14:23:37 +00:00
return col_to;
}
else
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
arguments[0].column->getName(), Name::name);
}
};
2016-07-31 03:53:16 +00:00
/// Declared early because used below.
struct NameToDate { static constexpr auto name = "toDate"; };
struct NameToDate32 { static constexpr auto name = "toDate32"; };
struct NameToDateTime { static constexpr auto name = "toDateTime"; };
struct NameToDateTime32 { static constexpr auto name = "toDateTime32"; };
struct NameToDateTime64 { static constexpr auto name = "toDateTime64"; };
struct NameToString { static constexpr auto name = "toString"; };
struct NameToDecimal32 { static constexpr auto name = "toDecimal32"; };
struct NameToDecimal64 { static constexpr auto name = "toDecimal64"; };
struct NameToDecimal128 { static constexpr auto name = "toDecimal128"; };
struct NameToDecimal256 { static constexpr auto name = "toDecimal256"; };
#define DEFINE_NAME_TO_INTERVAL(INTERVAL_KIND) \
struct NameToInterval ## INTERVAL_KIND \
{ \
static constexpr auto name = "toInterval" #INTERVAL_KIND; \
static constexpr auto kind = IntervalKind::INTERVAL_KIND; \
};
DEFINE_NAME_TO_INTERVAL(Nanosecond)
DEFINE_NAME_TO_INTERVAL(Microsecond)
DEFINE_NAME_TO_INTERVAL(Millisecond)
DEFINE_NAME_TO_INTERVAL(Second)
DEFINE_NAME_TO_INTERVAL(Minute)
DEFINE_NAME_TO_INTERVAL(Hour)
DEFINE_NAME_TO_INTERVAL(Day)
DEFINE_NAME_TO_INTERVAL(Week)
DEFINE_NAME_TO_INTERVAL(Month)
DEFINE_NAME_TO_INTERVAL(Quarter)
DEFINE_NAME_TO_INTERVAL(Year)
#undef DEFINE_NAME_TO_INTERVAL
2011-10-16 01:57:10 +00:00
struct NameParseDateTimeBestEffort;
struct NameParseDateTimeBestEffortOrZero;
struct NameParseDateTimeBestEffortOrNull;
2020-08-20 11:18:29 +00:00
template<typename Name, typename ToDataType>
2020-10-17 14:23:37 +00:00
static inline bool isDateTime64(const ColumnsWithTypeAndName & arguments)
2020-08-20 11:18:29 +00:00
{
if constexpr (std::is_same_v<ToDataType, DataTypeDateTime64>)
return true;
else if constexpr (std::is_same_v<Name, NameToDateTime> || std::is_same_v<Name, NameParseDateTimeBestEffort>
|| std::is_same_v<Name, NameParseDateTimeBestEffortOrZero> || std::is_same_v<Name, NameParseDateTimeBestEffortOrNull>)
2020-08-20 11:18:29 +00:00
{
return (arguments.size() == 2 && isUInt(arguments[1].type)) || arguments.size() == 3;
2020-08-20 11:18:29 +00:00
}
return false;
}
template <typename ToDataType, typename Name, typename MonotonicityImpl>
2011-10-16 01:57:10 +00:00
class FunctionConvert : public IFunction
{
2011-10-15 23:40:56 +00:00
public:
using Monotonic = MonotonicityImpl;
static constexpr auto name = Name::name;
2018-08-21 18:25:38 +00:00
static constexpr bool to_decimal =
std::is_same_v<Name, NameToDecimal32> || std::is_same_v<Name, NameToDecimal64>
|| std::is_same_v<Name, NameToDecimal128> || std::is_same_v<Name, NameToDecimal256>;
2018-08-21 18:25:38 +00:00
static constexpr bool to_datetime64 = std::is_same_v<ToDataType, DataTypeDateTime64>;
static constexpr bool to_string_or_fixed_string = std::is_same_v<ToDataType, DataTypeFixedString> ||
std::is_same_v<ToDataType, DataTypeString>;
2021-08-16 11:30:56 +00:00
static constexpr bool to_date_or_datetime = std::is_same_v<ToDataType, DataTypeDate> ||
std::is_same_v<ToDataType, DataTypeDate32> ||
std::is_same_v<ToDataType, DataTypeDateTime>;
static FunctionPtr create(ContextPtr context) { return std::make_shared<FunctionConvert>(context); }
static FunctionPtr create() { return std::make_shared<FunctionConvert>(); }
FunctionConvert() = default;
explicit FunctionConvert(ContextPtr context_) : context(context_) {}
String getName() const override
2011-10-15 23:40:56 +00:00
{
return name;
2011-10-15 23:40:56 +00:00
}
2016-12-29 19:38:10 +00:00
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
bool isInjective(const ColumnsWithTypeAndName &) const override { return std::is_same_v<Name, NameToString>; }
2021-08-16 11:30:56 +00:00
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & arguments) const override
{
/// TODO: We can make more optimizations here.
return !(to_date_or_datetime && isNumber(*arguments[0].type));
}
2021-05-16 15:17:05 +00:00
using DefaultReturnTypeGetter = std::function<DataTypePtr(const ColumnsWithTypeAndName &)>;
static DataTypePtr getReturnTypeDefaultImplementationForNulls(const ColumnsWithTypeAndName & arguments, const DefaultReturnTypeGetter & getter)
{
2021-05-15 17:33:15 +00:00
NullPresence null_presence = getNullPresense(arguments);
if (null_presence.has_null_constant)
{
2021-05-16 15:17:05 +00:00
return makeNullable(std::make_shared<DataTypeNothing>());
2021-05-15 17:33:15 +00:00
}
if (null_presence.has_nullable)
{
auto nested_columns = Block(createBlockWithNestedColumns(arguments));
2021-05-16 15:17:05 +00:00
auto return_type = getter(ColumnsWithTypeAndName(nested_columns.begin(), nested_columns.end()));
return makeNullable(return_type);
2021-05-15 17:33:15 +00:00
}
2021-05-16 15:17:05 +00:00
return getter(arguments);
}
2021-05-15 17:33:15 +00:00
2021-05-16 15:17:05 +00:00
DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override
{
auto getter = [&] (const auto & args) { return getReturnTypeImplRemovedNullable(args); };
auto res = getReturnTypeDefaultImplementationForNulls(arguments, getter);
to_nullable = res->isNullable();
2020-12-24 00:13:53 +00:00
checked_return_type = true;
return res;
}
DataTypePtr getReturnTypeImplRemovedNullable(const ColumnsWithTypeAndName & arguments) const
2011-10-15 23:40:56 +00:00
{
FunctionArgumentDescriptors mandatory_args = {{"Value", nullptr, nullptr, nullptr}};
2019-12-23 14:54:06 +00:00
FunctionArgumentDescriptors optional_args;
2020-08-20 11:18:29 +00:00
if constexpr (to_decimal)
2018-08-21 18:25:38 +00:00
{
2021-09-30 11:35:24 +00:00
mandatory_args.push_back({"scale", &isNativeInteger<IDataType>, &isColumnConst, "const Integer"});
}
2020-08-20 11:18:29 +00:00
if (!to_decimal && isDateTime64<Name, ToDataType>(arguments))
{
2021-09-30 11:35:24 +00:00
mandatory_args.push_back({"scale", &isNativeInteger<IDataType>, &isColumnConst, "const Integer"});
}
2019-12-23 14:54:06 +00:00
// toString(DateTime or DateTime64, [timezone: String])
2020-10-17 14:23:37 +00:00
if ((std::is_same_v<Name, NameToString> && !arguments.empty() && (isDateTime64(arguments[0].type) || isDateTime(arguments[0].type)))
// toUnixTimestamp(value[, timezone : String])
|| std::is_same_v<Name, NameToUnixTimestamp>
// toDate(value[, timezone : String])
2020-06-27 19:05:00 +00:00
|| std::is_same_v<ToDataType, DataTypeDate> // TODO: shall we allow timestamp argument for toDate? DateTime knows nothing about timezones and this argument is ignored below.
2023-05-09 20:37:25 +00:00
// toDate32(value[, timezone : String])
2021-07-15 11:40:45 +00:00
|| std::is_same_v<ToDataType, DataTypeDate32>
// toDateTime(value[, timezone: String])
|| std::is_same_v<ToDataType, DataTypeDateTime>
// toDateTime64(value, scale : Integer[, timezone: String])
|| std::is_same_v<ToDataType, DataTypeDateTime64>)
2018-08-21 18:25:38 +00:00
{
optional_args.push_back({"timezone", &isString<IDataType>, nullptr, "String"});
2018-08-21 18:25:38 +00:00
}
validateFunctionArgumentTypes(*this, arguments, mandatory_args, optional_args);
2017-12-25 04:01:46 +00:00
if constexpr (std::is_same_v<ToDataType, DataTypeInterval>)
{
return std::make_shared<DataTypeInterval>(Name::kind);
2017-12-02 02:47:12 +00:00
}
2018-08-21 18:25:38 +00:00
else if constexpr (to_decimal)
{
UInt64 scale = extractToDecimalScale(arguments[1]);
if constexpr (std::is_same_v<Name, NameToDecimal32>)
return createDecimalMaxPrecision<Decimal32>(scale);
else if constexpr (std::is_same_v<Name, NameToDecimal64>)
return createDecimalMaxPrecision<Decimal64>(scale);
2018-11-24 01:48:06 +00:00
else if constexpr (std::is_same_v<Name, NameToDecimal128>)
return createDecimalMaxPrecision<Decimal128>(scale);
else if constexpr (std::is_same_v<Name, NameToDecimal256>)
return createDecimalMaxPrecision<Decimal256>(scale);
2018-08-21 18:25:38 +00:00
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected branch in code of conversion function: it is a bug.");
2018-08-21 18:25:38 +00:00
}
2017-12-02 02:47:12 +00:00
else
{
// Optional second argument with time zone for DateTime.
UInt8 timezone_arg_position = 1;
UInt32 scale [[maybe_unused]] = DataTypeDateTime64::default_scale;
// DateTime64 requires more arguments: scale and timezone. Since timezone is optional, scale should be first.
2020-08-20 11:18:29 +00:00
if (isDateTime64<Name, ToDataType>(arguments))
{
timezone_arg_position += 1;
scale = static_cast<UInt32>(arguments[1].column->get64(0));
2020-08-20 11:18:29 +00:00
if (to_datetime64 || scale != 0) /// toDateTime('xxxx-xx-xx xx:xx:xx', 0) return DateTime
return std::make_shared<DataTypeDateTime64>(scale,
extractTimeZoneNameFromFunctionArguments(arguments, timezone_arg_position, 0, false));
2020-08-20 11:18:29 +00:00
return std::make_shared<DataTypeDateTime>(extractTimeZoneNameFromFunctionArguments(arguments, timezone_arg_position, 0, false));
}
if constexpr (std::is_same_v<ToDataType, DataTypeDateTime>)
return std::make_shared<DataTypeDateTime>(extractTimeZoneNameFromFunctionArguments(arguments, timezone_arg_position, 0, false));
2020-08-20 11:18:29 +00:00
else if constexpr (std::is_same_v<ToDataType, DataTypeDateTime64>)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected branch in code of conversion function: it is a bug.");
2017-12-02 02:47:12 +00:00
else
2018-02-02 08:33:36 +00:00
return std::make_shared<ToDataType>();
2017-12-02 02:47:12 +00:00
}
}
2020-12-24 00:13:53 +00:00
/// Function actually uses default implementation for nulls,
/// but we need to know if return type is Nullable or not,
/// so we use checked_return_type only to intercept the first call to getReturnTypeImpl(...).
bool useDefaultImplementationForNulls() const override
{
bool to_nullable_string = to_nullable && std::is_same_v<ToDataType, DataTypeString>;
return checked_return_type && !to_nullable_string;
}
2020-12-24 00:13:53 +00:00
bool useDefaultImplementationForConstants() const override { return true; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override
{
2023-09-01 16:30:39 +00:00
if constexpr (std::is_same_v<ToDataType, DataTypeString>)
return {};
else if constexpr (std::is_same_v<ToDataType, DataTypeDateTime64>)
return {2};
return {1};
}
bool canBeExecutedOnDefaultArguments() const override { return false; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
try
{
2020-10-17 14:23:37 +00:00
return executeInternal(arguments, result_type, input_rows_count);
}
catch (Exception & e)
{
/// More convenient error message.
if (e.code() == ErrorCodes::ATTEMPT_TO_READ_AFTER_EOF)
{
e.addMessage("Cannot parse "
2020-10-17 14:23:37 +00:00
+ result_type->getName() + " from "
+ arguments[0].type->getName()
+ ", because value is too short");
}
else if (e.code() == ErrorCodes::CANNOT_PARSE_NUMBER
|| e.code() == ErrorCodes::CANNOT_READ_ARRAY_FROM_TEXT
|| e.code() == ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED
|| e.code() == ErrorCodes::CANNOT_PARSE_QUOTED_STRING
|| e.code() == ErrorCodes::CANNOT_PARSE_ESCAPE_SEQUENCE
|| e.code() == ErrorCodes::CANNOT_PARSE_DATE
|| e.code() == ErrorCodes::CANNOT_PARSE_DATETIME
|| e.code() == ErrorCodes::CANNOT_PARSE_UUID
|| e.code() == ErrorCodes::CANNOT_PARSE_IPV4
|| e.code() == ErrorCodes::CANNOT_PARSE_IPV6)
{
e.addMessage("Cannot parse "
2020-10-17 14:23:37 +00:00
+ result_type->getName() + " from "
+ arguments[0].type->getName());
}
throw;
}
}
bool hasInformationAboutMonotonicity() const override
{
return Monotonic::has();
}
Monotonicity getMonotonicityForRange(const IDataType & type, const Field & left, const Field & right) const override
{
return Monotonic::get(type, left, right);
}
private:
ContextPtr context;
2020-12-24 00:13:53 +00:00
mutable bool checked_return_type = false;
mutable bool to_nullable = false;
ColumnPtr executeInternal(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const
2011-10-15 23:40:56 +00:00
{
2020-10-17 14:23:37 +00:00
if (arguments.empty())
throw Exception(ErrorCodes::TOO_FEW_ARGUMENTS_FOR_FUNCTION, "Function {} expects at least 1 argument", getName());
if (result_type->onlyNull())
return result_type->createColumnConstWithDefaultValue(input_rows_count);
const DataTypePtr from_type = removeNullable(arguments[0].type);
2020-10-17 14:23:37 +00:00
ColumnPtr result_column;
ColumnConst unification (#1011) * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * Fixed error in ColumnArray::replicateGeneric [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150].
2017-07-21 06:35:58 +00:00
[[maybe_unused]] FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior = default_date_time_overflow_behavior;
if (context)
date_time_overflow_behavior = context->getSettingsRef().date_time_overflow_behavior.value;
auto call = [&](const auto & types, const auto & tag) -> bool
{
using Types = std::decay_t<decltype(types)>;
using LeftDataType = typename Types::LeftType;
using RightDataType = typename Types::RightType;
using SpecialTag = std::decay_t<decltype(tag)>;
if constexpr (IsDataTypeDecimal<RightDataType>)
2018-08-31 08:59:21 +00:00
{
if constexpr (std::is_same_v<RightDataType, DataTypeDateTime64>)
{
2021-05-03 19:56:40 +00:00
/// Account for optional timezone argument.
if (arguments.size() != 2 && arguments.size() != 3)
throw Exception(ErrorCodes::TOO_FEW_ARGUMENTS_FOR_FUNCTION, "Function {} expects 2 or 3 arguments for DataTypeDateTime64.", getName());
}
else if (arguments.size() != 2)
{
throw Exception(ErrorCodes::TOO_FEW_ARGUMENTS_FOR_FUNCTION, "Function {} expects 2 arguments for Decimal.", getName());
}
2018-08-31 08:59:21 +00:00
2020-10-17 14:23:37 +00:00
const ColumnWithTypeAndName & scale_column = arguments[1];
2018-08-31 08:59:21 +00:00
UInt32 scale = extractToDecimalScale(scale_column);
switch (date_time_overflow_behavior)
{
case FormatSettings::DateTimeOverflowBehavior::Throw:
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag, FormatSettings::DateTimeOverflowBehavior::Throw>::execute(arguments, result_type, input_rows_count, scale);
break;
case FormatSettings::DateTimeOverflowBehavior::Ignore:
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag, FormatSettings::DateTimeOverflowBehavior::Ignore>::execute(arguments, result_type, input_rows_count, scale);
break;
case FormatSettings::DateTimeOverflowBehavior::Saturate:
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag, FormatSettings::DateTimeOverflowBehavior::Saturate>::execute(arguments, result_type, input_rows_count, scale);
break;
}
2018-08-31 08:59:21 +00:00
}
else if constexpr (IsDataTypeDateOrDateTime<RightDataType> && std::is_same_v<LeftDataType, DataTypeDateTime64>)
{
2020-10-17 14:23:37 +00:00
const auto * dt64 = assert_cast<const DataTypeDateTime64 *>(arguments[0].type.get());
switch (date_time_overflow_behavior)
{
case FormatSettings::DateTimeOverflowBehavior::Throw:
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag, FormatSettings::DateTimeOverflowBehavior::Throw>::execute(arguments, result_type, input_rows_count, dt64->getScale());
break;
case FormatSettings::DateTimeOverflowBehavior::Ignore:
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag, FormatSettings::DateTimeOverflowBehavior::Ignore>::execute(arguments, result_type, input_rows_count, dt64->getScale());
break;
case FormatSettings::DateTimeOverflowBehavior::Saturate:
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag, FormatSettings::DateTimeOverflowBehavior::Saturate>::execute(arguments, result_type, input_rows_count, dt64->getScale());
break;
}
}
#define GENERATE_OVERFLOW_MODE_CASE(OVERFLOW_MODE) \
case FormatSettings::DateTimeOverflowBehavior::OVERFLOW_MODE: \
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag, FormatSettings::DateTimeOverflowBehavior::OVERFLOW_MODE>::execute( \
arguments, result_type, input_rows_count); \
break;
else if constexpr (IsDataTypeDecimalOrNumber<LeftDataType> && IsDataTypeDecimalOrNumber<RightDataType>)
{
using LeftT = typename LeftDataType::FieldType;
using RightT = typename RightDataType::FieldType;
static constexpr bool bad_left =
2021-09-10 11:49:22 +00:00
is_decimal<LeftT> || std::is_floating_point_v<LeftT> || is_big_int_v<LeftT> || is_signed_v<LeftT>;
static constexpr bool bad_right =
2021-09-10 11:49:22 +00:00
is_decimal<RightT> || std::is_floating_point_v<RightT> || is_big_int_v<RightT> || is_signed_v<RightT>;
/// Disallow int vs UUID conversion (but support int vs UInt128 conversion)
if constexpr ((bad_left && std::is_same_v<RightDataType, DataTypeUUID>) ||
(bad_right && std::is_same_v<LeftDataType, DataTypeUUID>))
{
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Wrong UUID conversion");
}
else
2021-12-20 23:59:08 +00:00
{
switch (date_time_overflow_behavior)
{
2023-10-23 13:01:45 +00:00
GENERATE_OVERFLOW_MODE_CASE(Throw)
GENERATE_OVERFLOW_MODE_CASE(Ignore)
GENERATE_OVERFLOW_MODE_CASE(Saturate)
}
2021-12-20 23:59:08 +00:00
}
}
else if constexpr ((IsDataTypeNumber<LeftDataType> || IsDataTypeDateOrDateTime<LeftDataType>)
&& IsDataTypeDateOrDateTime<RightDataType>)
2021-07-15 11:40:45 +00:00
{
switch (date_time_overflow_behavior)
{
2023-10-23 13:01:45 +00:00
GENERATE_OVERFLOW_MODE_CASE(Throw)
GENERATE_OVERFLOW_MODE_CASE(Ignore)
GENERATE_OVERFLOW_MODE_CASE(Saturate)
}
2021-07-15 11:40:45 +00:00
}
#undef GENERATE_OVERFLOW_MODE_CASE
else
result_column = ConvertImpl<LeftDataType, RightDataType, Name, SpecialTag>::execute(arguments, result_type, input_rows_count);
return true;
};
2020-10-17 14:23:37 +00:00
if (isDateTime64<Name, ToDataType>(arguments))
{
/// For toDateTime('xxxx-xx-xx xx:xx:xx.00', 2[, 'timezone']) we need to it convert to DateTime64
2020-10-17 14:23:37 +00:00
const ColumnWithTypeAndName & scale_column = arguments[1];
2020-08-20 11:18:29 +00:00
UInt32 scale = extractToDecimalScale(scale_column);
2020-08-15 17:08:03 +00:00
if (to_datetime64 || scale != 0) /// When scale = 0, the data type is DateTime otherwise the data type is DateTime64
2020-08-20 11:18:29 +00:00
{
if (!callOnIndexAndDataType<DataTypeDateTime64>(from_type->getTypeId(), call, ConvertDefaultBehaviorTag{}))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}",
arguments[0].type->getName(), getName());
2020-08-15 17:08:03 +00:00
2020-10-17 14:23:37 +00:00
return result_column;
}
}
2022-01-25 09:32:21 +00:00
if constexpr (std::is_same_v<ToDataType, DataTypeString>)
{
if (from_type->getCustomSerialization())
return ConvertImplGenericToString<ColumnString>::execute(arguments, result_type, input_rows_count);
}
bool done = false;
if constexpr (to_string_or_fixed_string)
{
done = callOnIndexAndDataType<ToDataType>(from_type->getTypeId(), call, ConvertDefaultBehaviorTag{});
}
else
{
bool cast_ipv4_ipv6_default_on_conversion_error = false;
if constexpr (is_any_of<ToDataType, DataTypeIPv4, DataTypeIPv6>)
if (context && (cast_ipv4_ipv6_default_on_conversion_error = context->getSettingsRef().cast_ipv4_ipv6_default_on_conversion_error))
done = callOnIndexAndDataType<ToDataType>(from_type->getTypeId(), call, ConvertReturnZeroOnErrorTag{});
if (!cast_ipv4_ipv6_default_on_conversion_error)
{
/// We should use ConvertFromStringExceptionMode::Null mode when converting from String (or FixedString)
/// to Nullable type, to avoid 'value is too short' error on attempt to parse empty string from NULL values.
if (to_nullable && WhichDataType(from_type).isStringOrFixedString())
done = callOnIndexAndDataType<ToDataType>(from_type->getTypeId(), call, ConvertReturnNullOnErrorTag{});
else
done = callOnIndexAndDataType<ToDataType>(from_type->getTypeId(), call, ConvertDefaultBehaviorTag{});
}
}
if (!done)
{
/// Generic conversion of any type to String.
2017-12-25 04:01:46 +00:00
if (std::is_same_v<ToDataType, DataTypeString>)
{
return ConvertImplGenericToString<ColumnString>::execute(arguments, result_type, input_rows_count);
}
else
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}",
arguments[0].type->getName(), getName());
}
2020-10-19 18:37:44 +00:00
return result_column;
2011-10-15 23:40:56 +00:00
}
};
/** Function toTOrZero (where T is number of date or datetime type):
* try to convert from String to type T through parsing,
* if cannot parse, return default value instead of throwing exception.
* Function toTOrNull will return Nullable type with NULL when cannot parse.
* NOTE Also need to implement tryToUnixTimestamp with timezone.
*/
template <typename ToDataType, typename Name,
ConvertFromStringExceptionMode exception_mode,
ConvertFromStringParsingMode parsing_mode = ConvertFromStringParsingMode::Normal>
class FunctionConvertFromString : public IFunction
{
public:
static constexpr auto name = Name::name;
2018-08-31 08:59:21 +00:00
static constexpr bool to_decimal =
std::is_same_v<ToDataType, DataTypeDecimal<Decimal32>> ||
std::is_same_v<ToDataType, DataTypeDecimal<Decimal64>> ||
std::is_same_v<ToDataType, DataTypeDecimal<Decimal128>> ||
std::is_same_v<ToDataType, DataTypeDecimal<Decimal256>>;
2018-08-31 08:59:21 +00:00
static constexpr bool to_datetime64 = std::is_same_v<ToDataType, DataTypeDateTime64>;
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionConvertFromString>(); }
static FunctionPtr create() { return std::make_shared<FunctionConvertFromString>(); }
String getName() const override
{
return name;
}
bool isVariadic() const override { return true; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
bool useDefaultImplementationForConstants() const override { return true; }
bool canBeExecutedOnDefaultArguments() const override { return false; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }
DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override
{
DataTypePtr res;
if (isDateTime64<Name, ToDataType>(arguments))
{
validateFunctionArgumentTypes(*this, arguments,
2021-09-30 11:35:24 +00:00
FunctionArgumentDescriptors{{"string", &isStringOrFixedString<IDataType>, nullptr, "String or FixedString"}},
// optional
FunctionArgumentDescriptors{
2021-09-30 11:35:24 +00:00
{"precision", &isUInt8<IDataType>, isColumnConst, "const UInt8"},
{"timezone", &isStringOrFixedString<IDataType>, isColumnConst, "const String or FixedString"},
});
UInt64 scale = to_datetime64 ? DataTypeDateTime64::default_scale : 0;
if (arguments.size() > 1)
scale = extractToDecimalScale(arguments[1]);
const auto timezone = extractTimeZoneNameFromFunctionArguments(arguments, 2, 0, false);
res = scale == 0 ? res = std::make_shared<DataTypeDateTime>(timezone) : std::make_shared<DataTypeDateTime64>(scale, timezone);
}
else
{
if ((arguments.size() != 1 && arguments.size() != 2) || (to_decimal && arguments.size() != 2))
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Number of arguments for function {} doesn't match: passed {}, should be 1 or 2. "
"Second argument only make sense for DateTime (time zone, optional) and Decimal (scale).",
getName(), arguments.size());
if (!isStringOrFixedString(arguments[0].type))
{
if (this->getName().find("OrZero") != std::string::npos ||
this->getName().find("OrNull") != std::string::npos)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of first argument of function {}. "
"Conversion functions with postfix 'OrZero' or 'OrNull' should take String argument",
arguments[0].type->getName(), getName());
else
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of first argument of function {}",
arguments[0].type->getName(), getName());
}
if (arguments.size() == 2)
{
if constexpr (std::is_same_v<ToDataType, DataTypeDateTime>)
{
if (!isString(arguments[1].type))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of 2nd argument of function {}",
arguments[1].type->getName(), getName());
}
else if constexpr (to_decimal)
{
if (!isInteger(arguments[1].type))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of 2nd argument of function {}",
arguments[1].type->getName(), getName());
if (!arguments[1].column)
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Second argument for function {} must be constant", getName());
}
else
{
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Number of arguments for function {} doesn't match: passed {}, should be 1. "
"Second argument makes sense only for DateTime and Decimal.",
getName(), arguments.size());
}
}
if constexpr (std::is_same_v<ToDataType, DataTypeDateTime>)
res = std::make_shared<DataTypeDateTime>(extractTimeZoneNameFromFunctionArguments(arguments, 1, 0, false));
else if constexpr (std::is_same_v<ToDataType, DataTypeDateTime64>)
throw Exception(ErrorCodes::LOGICAL_ERROR, "LOGICAL ERROR: It is a bug.");
else if constexpr (to_decimal)
{
UInt64 scale = extractToDecimalScale(arguments[1]);
res = createDecimalMaxPrecision<typename ToDataType::FieldType>(scale);
if (!res)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Something wrong with toDecimalNNOrZero() or toDecimalNNOrNull()");
}
else
res = std::make_shared<ToDataType>();
}
2018-02-12 00:55:46 +00:00
if constexpr (exception_mode == ConvertFromStringExceptionMode::Null)
res = std::make_shared<DataTypeNullable>(res);
return res;
}
template <typename ConvertToDataType>
ColumnPtr executeInternal(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, UInt32 scale = 0) const
{
2020-10-17 14:23:37 +00:00
const IDataType * from_type = arguments[0].type.get();
if (checkAndGetDataType<DataTypeString>(from_type))
{
2020-10-17 14:23:37 +00:00
return ConvertThroughParsing<DataTypeString, ConvertToDataType, Name, exception_mode, parsing_mode>::execute(
arguments, result_type, input_rows_count, scale);
}
else if (checkAndGetDataType<DataTypeFixedString>(from_type))
{
2020-10-17 14:23:37 +00:00
return ConvertThroughParsing<DataTypeFixedString, ConvertToDataType, Name, exception_mode, parsing_mode>::execute(
arguments, result_type, input_rows_count, scale);
}
2020-10-17 14:23:37 +00:00
return nullptr;
}
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
{
2020-10-17 14:23:37 +00:00
ColumnPtr result_column;
if constexpr (to_decimal)
2020-10-17 14:23:37 +00:00
result_column = executeInternal<ToDataType>(arguments, result_type, input_rows_count,
assert_cast<const ToDataType &>(*removeNullable(result_type)).getScale());
else
{
2020-10-17 14:23:37 +00:00
if (isDateTime64<Name, ToDataType>(arguments))
{
UInt64 scale = to_datetime64 ? DataTypeDateTime64::default_scale : 0;
if (arguments.size() > 1)
2020-10-17 14:23:37 +00:00
scale = extractToDecimalScale(arguments[1]);
if (scale == 0)
2020-10-17 14:23:37 +00:00
result_column = executeInternal<DataTypeDateTime>(arguments, result_type, input_rows_count);
else
{
2020-10-17 14:23:37 +00:00
result_column = executeInternal<DataTypeDateTime64>(arguments, result_type, input_rows_count, static_cast<UInt32>(scale));
}
}
else
{
2020-10-17 14:23:37 +00:00
result_column = executeInternal<ToDataType>(arguments, result_type, input_rows_count);
}
}
2020-10-17 14:23:37 +00:00
if (!result_column)
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}. "
"Only String or FixedString argument is accepted for try-conversion function. For other arguments, "
"use function without 'orZero' or 'orNull'.", arguments[0].type->getName(), getName());
2020-10-17 14:23:37 +00:00
return result_column;
}
};
/// Monotonicity.
struct PositiveMonotonicity
{
static bool has() { return true; }
2017-12-02 02:47:12 +00:00
static IFunction::Monotonicity get(const IDataType &, const Field &, const Field &)
{
return { .is_monotonic = true };
}
};
2018-08-22 17:26:11 +00:00
struct UnknownMonotonicity
{
static bool has() { return false; }
static IFunction::Monotonicity get(const IDataType &, const Field &, const Field &)
{
return { };
2018-08-22 17:26:11 +00:00
}
};
template <typename T>
2019-08-08 08:41:38 +00:00
struct ToNumberMonotonicity
{
static bool has() { return true; }
2017-12-02 02:47:12 +00:00
static UInt64 divideByRangeOfType(UInt64 x)
{
if constexpr (sizeof(T) < sizeof(UInt64))
return x >> (sizeof(T) * 8);
else
return 0;
}
static IFunction::Monotonicity get(const IDataType & type, const Field & left, const Field & right)
{
2018-12-20 11:42:45 +00:00
if (!type.isValueRepresentedByNumber())
return {};
/// If type is same, the conversion is always monotonic.
/// (Enum has separate case, because it is different data type)
if (checkAndGetDataType<DataTypeNumber<T>>(&type) ||
checkAndGetDataType<DataTypeEnum<T>>(&type))
return { .is_monotonic = true, .is_always_monotonic = true };
/// Float cases.
2018-12-24 13:25:48 +00:00
/// When converting to Float, the conversion is always monotonic.
if constexpr (std::is_floating_point_v<T>)
return { .is_monotonic = true, .is_always_monotonic = true };
2023-01-01 19:41:18 +00:00
const auto * low_cardinality = typeid_cast<const DataTypeLowCardinality *>(&type);
const IDataType * low_cardinality_dictionary_type = nullptr;
if (low_cardinality)
low_cardinality_dictionary_type = low_cardinality->getDictionaryType().get();
2022-11-27 10:40:26 +00:00
2023-01-01 19:41:18 +00:00
WhichDataType which_type(type);
WhichDataType which_inner_type = low_cardinality
? WhichDataType(low_cardinality_dictionary_type)
: WhichDataType(type);
/// If converting from Float, for monotonicity, arguments must fit in range of result type.
if (which_inner_type.isFloat())
{
if (left.isNull() || right.isNull())
return {};
Float64 left_float = left.get<Float64>();
Float64 right_float = right.get<Float64>();
if (left_float >= static_cast<Float64>(std::numeric_limits<T>::min())
&& left_float <= static_cast<Float64>(std::numeric_limits<T>::max())
&& right_float >= static_cast<Float64>(std::numeric_limits<T>::min())
&& right_float <= static_cast<Float64>(std::numeric_limits<T>::max()))
return { .is_monotonic = true };
return {};
}
/// Integer cases.
2023-01-03 00:17:05 +00:00
/// Only support types represented by native integers.
/// It can be extended to big integers, decimals and DateTime64 later.
/// By the way, NULLs are representing unbounded ranges.
if (!((left.isNull() || left.getType() == Field::Types::UInt64 || left.getType() == Field::Types::Int64)
&& (right.isNull() || right.getType() == Field::Types::UInt64 || right.getType() == Field::Types::Int64)))
return {};
2018-12-25 18:40:47 +00:00
const bool from_is_unsigned = type.isValueRepresentedByUnsignedInteger();
2019-11-02 05:55:06 +00:00
const bool to_is_unsigned = is_unsigned_v<T>;
2018-12-25 18:40:47 +00:00
const size_t size_of_from = type.getSizeOfValueInMemory();
const size_t size_of_to = sizeof(T);
2018-12-25 18:40:47 +00:00
const bool left_in_first_half = left.isNull()
? from_is_unsigned
2018-12-25 18:40:47 +00:00
: (left.get<Int64>() >= 0);
2018-12-25 18:40:47 +00:00
const bool right_in_first_half = right.isNull()
? !from_is_unsigned
2018-12-25 18:40:47 +00:00
: (right.get<Int64>() >= 0);
2018-12-25 18:06:38 +00:00
/// Size of type is the same.
if (size_of_from == size_of_to)
{
if (from_is_unsigned == to_is_unsigned)
return { .is_monotonic = true, .is_always_monotonic = true };
if (left_in_first_half == right_in_first_half)
return { .is_monotonic = true };
return {};
}
/// Size of type is expanded.
if (size_of_from < size_of_to)
{
if (from_is_unsigned == to_is_unsigned)
return { .is_monotonic = true, .is_always_monotonic = true };
if (!to_is_unsigned)
return { .is_monotonic = true, .is_always_monotonic = true };
/// signed -> unsigned. If arguments from the same half, then function is monotonic.
if (left_in_first_half == right_in_first_half)
return { .is_monotonic = true };
2018-12-25 18:40:47 +00:00
return {};
}
2020-08-08 00:47:03 +00:00
/// Size of type is shrunk.
if (size_of_from > size_of_to)
{
/// Function cannot be monotonic on unbounded ranges.
if (left.isNull() || right.isNull())
return {};
2020-09-14 03:34:14 +00:00
/// Function cannot be monotonic when left and right are not on the same ranges.
if (divideByRangeOfType(left.get<UInt64>()) != divideByRangeOfType(right.get<UInt64>()))
return {};
2020-09-14 03:34:14 +00:00
if (to_is_unsigned)
return { .is_monotonic = true };
2020-09-14 03:34:14 +00:00
else
{
2020-09-14 03:34:14 +00:00
// If To is signed, it's possible that the signedness is different after conversion. So we check it explicitly.
const bool is_monotonic = (T(left.get<UInt64>()) >= 0) == (T(right.get<UInt64>()) >= 0);
return { .is_monotonic = is_monotonic };
}
}
UNREACHABLE();
}
};
2020-08-07 17:38:42 +00:00
struct ToDateMonotonicity
{
static bool has() { return true; }
static IFunction::Monotonicity get(const IDataType & type, const Field & left, const Field & right)
{
auto which = WhichDataType(type);
if (which.isDateOrDate32() || which.isDateTime() || which.isDateTime64() || which.isInt8() || which.isInt16() || which.isUInt8()
|| which.isUInt16())
2022-10-22 07:02:20 +00:00
{
return {.is_monotonic = true, .is_always_monotonic = true};
2022-10-22 07:02:20 +00:00
}
2020-08-07 17:38:42 +00:00
else if (
2022-10-22 07:02:20 +00:00
((left.getType() == Field::Types::UInt64 || left.isNull()) && (right.getType() == Field::Types::UInt64 || right.isNull())
&& ((left.isNull() || left.get<UInt64>() < 0xFFFF) && (right.isNull() || right.get<UInt64>() >= 0xFFFF)))
2022-10-22 07:02:20 +00:00
|| ((left.getType() == Field::Types::Int64 || left.isNull()) && (right.getType() == Field::Types::Int64 || right.isNull())
&& ((left.isNull() || left.get<Int64>() < 0xFFFF) && (right.isNull() || right.get<Int64>() >= 0xFFFF)))
|| ((
(left.getType() == Field::Types::Float64 || left.isNull())
&& (right.getType() == Field::Types::Float64 || right.isNull())
2022-10-22 07:02:20 +00:00
&& ((left.isNull() || left.get<Float64>() < 0xFFFF) && (right.isNull() || right.get<Float64>() >= 0xFFFF))))
|| !isNativeNumber(type))
{
2020-08-07 17:38:42 +00:00
return {};
2022-10-22 07:02:20 +00:00
}
2020-08-07 17:38:42 +00:00
else
2022-10-22 07:02:20 +00:00
{
return {.is_monotonic = true, .is_always_monotonic = true};
2022-10-22 07:02:20 +00:00
}
2020-08-07 17:38:42 +00:00
}
};
2020-08-08 06:30:50 +00:00
struct ToDateTimeMonotonicity
{
static bool has() { return true; }
static IFunction::Monotonicity get(const IDataType & type, const Field &, const Field &)
{
if (type.isValueRepresentedByNumber())
return {.is_monotonic = true, .is_always_monotonic = true};
2020-08-08 06:30:50 +00:00
else
return {};
}
};
2017-05-13 22:19:04 +00:00
/** The monotonicity for the `toString` function is mainly determined for test purposes.
* It is doubtful that anyone is looking to optimize queries with conditions `toString(CounterID) = 34`.
*/
struct ToStringMonotonicity
{
static bool has() { return true; }
static IFunction::Monotonicity get(const IDataType & type, const Field & left, const Field & right)
{
IFunction::Monotonicity positive{ .is_monotonic = true };
IFunction::Monotonicity not_monotonic;
2020-10-17 14:23:37 +00:00
const auto * type_ptr = &type;
if (const auto * low_cardinality_type = checkAndGetDataType<DataTypeLowCardinality>(type_ptr))
2020-04-08 05:27:46 +00:00
type_ptr = low_cardinality_type->getDictionaryType().get();
2022-11-23 22:08:14 +00:00
/// Order on enum values (which is the order on integers) is completely arbitrary in respect to the order on strings.
if (WhichDataType(type).isEnum())
return not_monotonic;
2021-07-15 11:40:45 +00:00
/// `toString` function is monotonous if the argument is Date or Date32 or DateTime or String, or non-negative numbers with the same number of symbols.
if (checkDataTypes<DataTypeDate, DataTypeDate32, DataTypeDateTime, DataTypeString>(type_ptr))
return positive;
if (left.isNull() || right.isNull())
return {};
if (left.getType() == Field::Types::UInt64
&& right.getType() == Field::Types::UInt64)
{
return (left.get<Int64>() == 0 && right.get<Int64>() == 0)
|| (floor(log10(left.get<UInt64>())) == floor(log10(right.get<UInt64>())))
? positive : not_monotonic;
}
if (left.getType() == Field::Types::Int64
&& right.getType() == Field::Types::Int64)
{
return (left.get<Int64>() == 0 && right.get<Int64>() == 0)
|| (left.get<Int64>() > 0 && right.get<Int64>() > 0 && floor(log10(left.get<Int64>())) == floor(log10(right.get<Int64>())))
? positive : not_monotonic;
}
return not_monotonic;
}
};
struct NameToUInt8 { static constexpr auto name = "toUInt8"; };
struct NameToUInt16 { static constexpr auto name = "toUInt16"; };
struct NameToUInt32 { static constexpr auto name = "toUInt32"; };
struct NameToUInt64 { static constexpr auto name = "toUInt64"; };
2021-05-03 15:41:37 +00:00
struct NameToUInt128 { static constexpr auto name = "toUInt128"; };
struct NameToUInt256 { static constexpr auto name = "toUInt256"; };
struct NameToInt8 { static constexpr auto name = "toInt8"; };
struct NameToInt16 { static constexpr auto name = "toInt16"; };
struct NameToInt32 { static constexpr auto name = "toInt32"; };
struct NameToInt64 { static constexpr auto name = "toInt64"; };
struct NameToInt128 { static constexpr auto name = "toInt128"; };
struct NameToInt256 { static constexpr auto name = "toInt256"; };
struct NameToFloat32 { static constexpr auto name = "toFloat32"; };
struct NameToFloat64 { static constexpr auto name = "toFloat64"; };
struct NameToUUID { static constexpr auto name = "toUUID"; };
struct NameToIPv4 { static constexpr auto name = "toIPv4"; };
struct NameToIPv6 { static constexpr auto name = "toIPv6"; };
2019-08-08 08:41:38 +00:00
using FunctionToUInt8 = FunctionConvert<DataTypeUInt8, NameToUInt8, ToNumberMonotonicity<UInt8>>;
using FunctionToUInt16 = FunctionConvert<DataTypeUInt16, NameToUInt16, ToNumberMonotonicity<UInt16>>;
using FunctionToUInt32 = FunctionConvert<DataTypeUInt32, NameToUInt32, ToNumberMonotonicity<UInt32>>;
using FunctionToUInt64 = FunctionConvert<DataTypeUInt64, NameToUInt64, ToNumberMonotonicity<UInt64>>;
2021-05-03 15:41:37 +00:00
using FunctionToUInt128 = FunctionConvert<DataTypeUInt128, NameToUInt128, ToNumberMonotonicity<UInt128>>;
using FunctionToUInt256 = FunctionConvert<DataTypeUInt256, NameToUInt256, ToNumberMonotonicity<UInt256>>;
2019-08-08 08:41:38 +00:00
using FunctionToInt8 = FunctionConvert<DataTypeInt8, NameToInt8, ToNumberMonotonicity<Int8>>;
using FunctionToInt16 = FunctionConvert<DataTypeInt16, NameToInt16, ToNumberMonotonicity<Int16>>;
using FunctionToInt32 = FunctionConvert<DataTypeInt32, NameToInt32, ToNumberMonotonicity<Int32>>;
using FunctionToInt64 = FunctionConvert<DataTypeInt64, NameToInt64, ToNumberMonotonicity<Int64>>;
using FunctionToInt128 = FunctionConvert<DataTypeInt128, NameToInt128, ToNumberMonotonicity<Int128>>;
using FunctionToInt256 = FunctionConvert<DataTypeInt256, NameToInt256, ToNumberMonotonicity<Int256>>;
2019-08-08 08:41:38 +00:00
using FunctionToFloat32 = FunctionConvert<DataTypeFloat32, NameToFloat32, ToNumberMonotonicity<Float32>>;
using FunctionToFloat64 = FunctionConvert<DataTypeFloat64, NameToFloat64, ToNumberMonotonicity<Float64>>;
2020-08-07 17:38:42 +00:00
using FunctionToDate = FunctionConvert<DataTypeDate, NameToDate, ToDateMonotonicity>;
using FunctionToDate32 = FunctionConvert<DataTypeDate32, NameToDate32, ToDateMonotonicity>;
2020-08-08 06:30:50 +00:00
using FunctionToDateTime = FunctionConvert<DataTypeDateTime, NameToDateTime, ToDateTimeMonotonicity>;
using FunctionToDateTime32 = FunctionConvert<DataTypeDateTime, NameToDateTime32, ToDateTimeMonotonicity>;
2022-08-03 13:36:36 +00:00
using FunctionToDateTime64 = FunctionConvert<DataTypeDateTime64, NameToDateTime64, ToDateTimeMonotonicity>;
2019-08-08 08:41:38 +00:00
using FunctionToUUID = FunctionConvert<DataTypeUUID, NameToUUID, ToNumberMonotonicity<UInt128>>;
using FunctionToIPv4 = FunctionConvert<DataTypeIPv4, NameToIPv4, ToNumberMonotonicity<UInt32>>;
using FunctionToIPv6 = FunctionConvert<DataTypeIPv6, NameToIPv6, ToNumberMonotonicity<UInt128>>;
using FunctionToString = FunctionConvert<DataTypeString, NameToString, ToStringMonotonicity>;
2019-08-08 08:41:38 +00:00
using FunctionToUnixTimestamp = FunctionConvert<DataTypeUInt32, NameToUnixTimestamp, ToNumberMonotonicity<UInt32>>;
2018-08-22 17:26:11 +00:00
using FunctionToDecimal32 = FunctionConvert<DataTypeDecimal<Decimal32>, NameToDecimal32, UnknownMonotonicity>;
using FunctionToDecimal64 = FunctionConvert<DataTypeDecimal<Decimal64>, NameToDecimal64, UnknownMonotonicity>;
using FunctionToDecimal128 = FunctionConvert<DataTypeDecimal<Decimal128>, NameToDecimal128, UnknownMonotonicity>;
using FunctionToDecimal256 = FunctionConvert<DataTypeDecimal<Decimal256>, NameToDecimal256, UnknownMonotonicity>;
template <typename DataType, FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior = default_date_time_overflow_behavior> struct FunctionTo;
template <> struct FunctionTo<DataTypeUInt8> { using Type = FunctionToUInt8; };
template <> struct FunctionTo<DataTypeUInt16> { using Type = FunctionToUInt16; };
template <> struct FunctionTo<DataTypeUInt32> { using Type = FunctionToUInt32; };
template <> struct FunctionTo<DataTypeUInt64> { using Type = FunctionToUInt64; };
2021-05-03 15:41:37 +00:00
template <> struct FunctionTo<DataTypeUInt128> { using Type = FunctionToUInt128; };
template <> struct FunctionTo<DataTypeUInt256> { using Type = FunctionToUInt256; };
template <> struct FunctionTo<DataTypeInt8> { using Type = FunctionToInt8; };
template <> struct FunctionTo<DataTypeInt16> { using Type = FunctionToInt16; };
template <> struct FunctionTo<DataTypeInt32> { using Type = FunctionToInt32; };
template <> struct FunctionTo<DataTypeInt64> { using Type = FunctionToInt64; };
template <> struct FunctionTo<DataTypeInt128> { using Type = FunctionToInt128; };
template <> struct FunctionTo<DataTypeInt256> { using Type = FunctionToInt256; };
template <> struct FunctionTo<DataTypeFloat32> { using Type = FunctionToFloat32; };
template <> struct FunctionTo<DataTypeFloat64> { using Type = FunctionToFloat64; };
template <FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct FunctionTo<DataTypeDate, date_time_overflow_behavior> { using Type = FunctionToDate; };
template <FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct FunctionTo<DataTypeDate32, date_time_overflow_behavior> { using Type = FunctionToDate32; };
template <FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct FunctionTo<DataTypeDateTime, date_time_overflow_behavior> { using Type = FunctionToDateTime; };
template <FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior>
struct FunctionTo<DataTypeDateTime64, date_time_overflow_behavior> { using Type = FunctionToDateTime64; };
template <> struct FunctionTo<DataTypeUUID> { using Type = FunctionToUUID; };
template <> struct FunctionTo<DataTypeIPv4> { using Type = FunctionToIPv4; };
template <> struct FunctionTo<DataTypeIPv6> { using Type = FunctionToIPv6; };
template <> struct FunctionTo<DataTypeString> { using Type = FunctionToString; };
template <> struct FunctionTo<DataTypeFixedString> { using Type = FunctionToFixedString; };
template <> struct FunctionTo<DataTypeDecimal<Decimal32>> { using Type = FunctionToDecimal32; };
template <> struct FunctionTo<DataTypeDecimal<Decimal64>> { using Type = FunctionToDecimal64; };
template <> struct FunctionTo<DataTypeDecimal<Decimal128>> { using Type = FunctionToDecimal128; };
template <> struct FunctionTo<DataTypeDecimal<Decimal256>> { using Type = FunctionToDecimal256; };
template <typename FieldType> struct FunctionTo<DataTypeEnum<FieldType>>
: FunctionTo<DataTypeNumber<FieldType>>
{
};
struct NameToUInt8OrZero { static constexpr auto name = "toUInt8OrZero"; };
struct NameToUInt16OrZero { static constexpr auto name = "toUInt16OrZero"; };
struct NameToUInt32OrZero { static constexpr auto name = "toUInt32OrZero"; };
struct NameToUInt64OrZero { static constexpr auto name = "toUInt64OrZero"; };
2021-05-03 15:41:37 +00:00
struct NameToUInt128OrZero { static constexpr auto name = "toUInt128OrZero"; };
struct NameToUInt256OrZero { static constexpr auto name = "toUInt256OrZero"; };
struct NameToInt8OrZero { static constexpr auto name = "toInt8OrZero"; };
struct NameToInt16OrZero { static constexpr auto name = "toInt16OrZero"; };
struct NameToInt32OrZero { static constexpr auto name = "toInt32OrZero"; };
struct NameToInt64OrZero { static constexpr auto name = "toInt64OrZero"; };
struct NameToInt128OrZero { static constexpr auto name = "toInt128OrZero"; };
struct NameToInt256OrZero { static constexpr auto name = "toInt256OrZero"; };
struct NameToFloat32OrZero { static constexpr auto name = "toFloat32OrZero"; };
struct NameToFloat64OrZero { static constexpr auto name = "toFloat64OrZero"; };
struct NameToDateOrZero { static constexpr auto name = "toDateOrZero"; };
struct NameToDate32OrZero { static constexpr auto name = "toDate32OrZero"; };
struct NameToDateTimeOrZero { static constexpr auto name = "toDateTimeOrZero"; };
struct NameToDateTime64OrZero { static constexpr auto name = "toDateTime64OrZero"; };
struct NameToDecimal32OrZero { static constexpr auto name = "toDecimal32OrZero"; };
struct NameToDecimal64OrZero { static constexpr auto name = "toDecimal64OrZero"; };
struct NameToDecimal128OrZero { static constexpr auto name = "toDecimal128OrZero"; };
struct NameToDecimal256OrZero { static constexpr auto name = "toDecimal256OrZero"; };
struct NameToUUIDOrZero { static constexpr auto name = "toUUIDOrZero"; };
struct NameToIPv4OrZero { static constexpr auto name = "toIPv4OrZero"; };
struct NameToIPv6OrZero { static constexpr auto name = "toIPv6OrZero"; };
using FunctionToUInt8OrZero = FunctionConvertFromString<DataTypeUInt8, NameToUInt8OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToUInt16OrZero = FunctionConvertFromString<DataTypeUInt16, NameToUInt16OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToUInt32OrZero = FunctionConvertFromString<DataTypeUInt32, NameToUInt32OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToUInt64OrZero = FunctionConvertFromString<DataTypeUInt64, NameToUInt64OrZero, ConvertFromStringExceptionMode::Zero>;
2021-05-03 15:41:37 +00:00
using FunctionToUInt128OrZero = FunctionConvertFromString<DataTypeUInt128, NameToUInt128OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToUInt256OrZero = FunctionConvertFromString<DataTypeUInt256, NameToUInt256OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToInt8OrZero = FunctionConvertFromString<DataTypeInt8, NameToInt8OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToInt16OrZero = FunctionConvertFromString<DataTypeInt16, NameToInt16OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToInt32OrZero = FunctionConvertFromString<DataTypeInt32, NameToInt32OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToInt64OrZero = FunctionConvertFromString<DataTypeInt64, NameToInt64OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToInt128OrZero = FunctionConvertFromString<DataTypeInt128, NameToInt128OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToInt256OrZero = FunctionConvertFromString<DataTypeInt256, NameToInt256OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToFloat32OrZero = FunctionConvertFromString<DataTypeFloat32, NameToFloat32OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToFloat64OrZero = FunctionConvertFromString<DataTypeFloat64, NameToFloat64OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDateOrZero = FunctionConvertFromString<DataTypeDate, NameToDateOrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDate32OrZero = FunctionConvertFromString<DataTypeDate32, NameToDate32OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDateTimeOrZero = FunctionConvertFromString<DataTypeDateTime, NameToDateTimeOrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDateTime64OrZero = FunctionConvertFromString<DataTypeDateTime64, NameToDateTime64OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDecimal32OrZero = FunctionConvertFromString<DataTypeDecimal<Decimal32>, NameToDecimal32OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDecimal64OrZero = FunctionConvertFromString<DataTypeDecimal<Decimal64>, NameToDecimal64OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDecimal128OrZero = FunctionConvertFromString<DataTypeDecimal<Decimal128>, NameToDecimal128OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToDecimal256OrZero = FunctionConvertFromString<DataTypeDecimal<Decimal256>, NameToDecimal256OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToUUIDOrZero = FunctionConvertFromString<DataTypeUUID, NameToUUIDOrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToIPv4OrZero = FunctionConvertFromString<DataTypeIPv4, NameToIPv4OrZero, ConvertFromStringExceptionMode::Zero>;
using FunctionToIPv6OrZero = FunctionConvertFromString<DataTypeIPv6, NameToIPv6OrZero, ConvertFromStringExceptionMode::Zero>;
struct NameToUInt8OrNull { static constexpr auto name = "toUInt8OrNull"; };
struct NameToUInt16OrNull { static constexpr auto name = "toUInt16OrNull"; };
struct NameToUInt32OrNull { static constexpr auto name = "toUInt32OrNull"; };
struct NameToUInt64OrNull { static constexpr auto name = "toUInt64OrNull"; };
2021-05-03 15:41:37 +00:00
struct NameToUInt128OrNull { static constexpr auto name = "toUInt128OrNull"; };
struct NameToUInt256OrNull { static constexpr auto name = "toUInt256OrNull"; };
struct NameToInt8OrNull { static constexpr auto name = "toInt8OrNull"; };
struct NameToInt16OrNull { static constexpr auto name = "toInt16OrNull"; };
struct NameToInt32OrNull { static constexpr auto name = "toInt32OrNull"; };
struct NameToInt64OrNull { static constexpr auto name = "toInt64OrNull"; };
struct NameToInt128OrNull { static constexpr auto name = "toInt128OrNull"; };
struct NameToInt256OrNull { static constexpr auto name = "toInt256OrNull"; };
struct NameToFloat32OrNull { static constexpr auto name = "toFloat32OrNull"; };
struct NameToFloat64OrNull { static constexpr auto name = "toFloat64OrNull"; };
struct NameToDateOrNull { static constexpr auto name = "toDateOrNull"; };
struct NameToDate32OrNull { static constexpr auto name = "toDate32OrNull"; };
struct NameToDateTimeOrNull { static constexpr auto name = "toDateTimeOrNull"; };
struct NameToDateTime64OrNull { static constexpr auto name = "toDateTime64OrNull"; };
struct NameToDecimal32OrNull { static constexpr auto name = "toDecimal32OrNull"; };
struct NameToDecimal64OrNull { static constexpr auto name = "toDecimal64OrNull"; };
struct NameToDecimal128OrNull { static constexpr auto name = "toDecimal128OrNull"; };
struct NameToDecimal256OrNull { static constexpr auto name = "toDecimal256OrNull"; };
struct NameToUUIDOrNull { static constexpr auto name = "toUUIDOrNull"; };
struct NameToIPv4OrNull { static constexpr auto name = "toIPv4OrNull"; };
struct NameToIPv6OrNull { static constexpr auto name = "toIPv6OrNull"; };
using FunctionToUInt8OrNull = FunctionConvertFromString<DataTypeUInt8, NameToUInt8OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToUInt16OrNull = FunctionConvertFromString<DataTypeUInt16, NameToUInt16OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToUInt32OrNull = FunctionConvertFromString<DataTypeUInt32, NameToUInt32OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToUInt64OrNull = FunctionConvertFromString<DataTypeUInt64, NameToUInt64OrNull, ConvertFromStringExceptionMode::Null>;
2021-05-03 15:41:37 +00:00
using FunctionToUInt128OrNull = FunctionConvertFromString<DataTypeUInt128, NameToUInt128OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToUInt256OrNull = FunctionConvertFromString<DataTypeUInt256, NameToUInt256OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToInt8OrNull = FunctionConvertFromString<DataTypeInt8, NameToInt8OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToInt16OrNull = FunctionConvertFromString<DataTypeInt16, NameToInt16OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToInt32OrNull = FunctionConvertFromString<DataTypeInt32, NameToInt32OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToInt64OrNull = FunctionConvertFromString<DataTypeInt64, NameToInt64OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToInt128OrNull = FunctionConvertFromString<DataTypeInt128, NameToInt128OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToInt256OrNull = FunctionConvertFromString<DataTypeInt256, NameToInt256OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToFloat32OrNull = FunctionConvertFromString<DataTypeFloat32, NameToFloat32OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToFloat64OrNull = FunctionConvertFromString<DataTypeFloat64, NameToFloat64OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDateOrNull = FunctionConvertFromString<DataTypeDate, NameToDateOrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDate32OrNull = FunctionConvertFromString<DataTypeDate32, NameToDate32OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDateTimeOrNull = FunctionConvertFromString<DataTypeDateTime, NameToDateTimeOrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDateTime64OrNull = FunctionConvertFromString<DataTypeDateTime64, NameToDateTime64OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDecimal32OrNull = FunctionConvertFromString<DataTypeDecimal<Decimal32>, NameToDecimal32OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDecimal64OrNull = FunctionConvertFromString<DataTypeDecimal<Decimal64>, NameToDecimal64OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDecimal128OrNull = FunctionConvertFromString<DataTypeDecimal<Decimal128>, NameToDecimal128OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToDecimal256OrNull = FunctionConvertFromString<DataTypeDecimal<Decimal256>, NameToDecimal256OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToUUIDOrNull = FunctionConvertFromString<DataTypeUUID, NameToUUIDOrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToIPv4OrNull = FunctionConvertFromString<DataTypeIPv4, NameToIPv4OrNull, ConvertFromStringExceptionMode::Null>;
using FunctionToIPv6OrNull = FunctionConvertFromString<DataTypeIPv6, NameToIPv6OrNull, ConvertFromStringExceptionMode::Null>;
struct NameParseDateTimeBestEffort { static constexpr auto name = "parseDateTimeBestEffort"; };
struct NameParseDateTimeBestEffortOrZero { static constexpr auto name = "parseDateTimeBestEffortOrZero"; };
struct NameParseDateTimeBestEffortOrNull { static constexpr auto name = "parseDateTimeBestEffortOrNull"; };
struct NameParseDateTimeBestEffortUS { static constexpr auto name = "parseDateTimeBestEffortUS"; };
struct NameParseDateTimeBestEffortUSOrZero { static constexpr auto name = "parseDateTimeBestEffortUSOrZero"; };
struct NameParseDateTimeBestEffortUSOrNull { static constexpr auto name = "parseDateTimeBestEffortUSOrNull"; };
struct NameParseDateTime32BestEffort { static constexpr auto name = "parseDateTime32BestEffort"; };
struct NameParseDateTime32BestEffortOrZero { static constexpr auto name = "parseDateTime32BestEffortOrZero"; };
struct NameParseDateTime32BestEffortOrNull { static constexpr auto name = "parseDateTime32BestEffortOrNull"; };
struct NameParseDateTime64BestEffort { static constexpr auto name = "parseDateTime64BestEffort"; };
struct NameParseDateTime64BestEffortOrZero { static constexpr auto name = "parseDateTime64BestEffortOrZero"; };
struct NameParseDateTime64BestEffortOrNull { static constexpr auto name = "parseDateTime64BestEffortOrNull"; };
2022-08-09 02:32:34 +00:00
struct NameParseDateTime64BestEffortUS { static constexpr auto name = "parseDateTime64BestEffortUS"; };
struct NameParseDateTime64BestEffortUSOrZero { static constexpr auto name = "parseDateTime64BestEffortUSOrZero"; };
struct NameParseDateTime64BestEffortUSOrNull { static constexpr auto name = "parseDateTime64BestEffortUSOrNull"; };
using FunctionParseDateTimeBestEffort = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTimeBestEffort, ConvertFromStringExceptionMode::Throw, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTimeBestEffortOrZero = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTimeBestEffortOrZero, ConvertFromStringExceptionMode::Zero, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTimeBestEffortOrNull = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTimeBestEffortOrNull, ConvertFromStringExceptionMode::Null, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTimeBestEffortUS = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTimeBestEffortUS, ConvertFromStringExceptionMode::Throw, ConvertFromStringParsingMode::BestEffortUS>;
using FunctionParseDateTimeBestEffortUSOrZero = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTimeBestEffortUSOrZero, ConvertFromStringExceptionMode::Zero, ConvertFromStringParsingMode::BestEffortUS>;
using FunctionParseDateTimeBestEffortUSOrNull = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTimeBestEffortUSOrNull, ConvertFromStringExceptionMode::Null, ConvertFromStringParsingMode::BestEffortUS>;
using FunctionParseDateTime32BestEffort = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTime32BestEffort, ConvertFromStringExceptionMode::Throw, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTime32BestEffortOrZero = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTime32BestEffortOrZero, ConvertFromStringExceptionMode::Zero, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTime32BestEffortOrNull = FunctionConvertFromString<
DataTypeDateTime, NameParseDateTime32BestEffortOrNull, ConvertFromStringExceptionMode::Null, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTime64BestEffort = FunctionConvertFromString<
DataTypeDateTime64, NameParseDateTime64BestEffort, ConvertFromStringExceptionMode::Throw, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTime64BestEffortOrZero = FunctionConvertFromString<
DataTypeDateTime64, NameParseDateTime64BestEffortOrZero, ConvertFromStringExceptionMode::Zero, ConvertFromStringParsingMode::BestEffort>;
using FunctionParseDateTime64BestEffortOrNull = FunctionConvertFromString<
DataTypeDateTime64, NameParseDateTime64BestEffortOrNull, ConvertFromStringExceptionMode::Null, ConvertFromStringParsingMode::BestEffort>;
2022-08-09 02:32:34 +00:00
using FunctionParseDateTime64BestEffortUS = FunctionConvertFromString<
DataTypeDateTime64, NameParseDateTime64BestEffortUS, ConvertFromStringExceptionMode::Throw, ConvertFromStringParsingMode::BestEffortUS>;
using FunctionParseDateTime64BestEffortUSOrZero = FunctionConvertFromString<
DataTypeDateTime64, NameParseDateTime64BestEffortUSOrZero, ConvertFromStringExceptionMode::Zero, ConvertFromStringParsingMode::BestEffortUS>;
using FunctionParseDateTime64BestEffortUSOrNull = FunctionConvertFromString<
DataTypeDateTime64, NameParseDateTime64BestEffortUSOrNull, ConvertFromStringExceptionMode::Null, ConvertFromStringParsingMode::BestEffortUS>;
2021-05-15 17:33:15 +00:00
class ExecutableFunctionCast : public IExecutableFunction
{
public:
2020-10-20 13:11:57 +00:00
using WrapperType = std::function<ColumnPtr(ColumnsWithTypeAndName &, const DataTypePtr &, const ColumnNullable *, size_t)>;
2018-02-02 08:33:36 +00:00
2020-11-18 09:35:32 +00:00
explicit ExecutableFunctionCast(
2023-11-10 04:23:50 +00:00
WrapperType && wrapper_function_, const char * name_, std::optional<CastDiagnostic> diagnostic_)
2020-11-18 09:35:32 +00:00
: wrapper_function(std::move(wrapper_function_)), name(name_), diagnostic(std::move(diagnostic_)) {}
2018-02-02 08:33:36 +00:00
String getName() const override { return name; }
protected:
2021-05-15 17:33:15 +00:00
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
2018-02-02 08:33:36 +00:00
{
/// drop second argument, pass others
2020-10-17 14:23:37 +00:00
ColumnsWithTypeAndName new_arguments{arguments.front()};
2018-02-02 08:33:36 +00:00
if (arguments.size() > 2)
new_arguments.insert(std::end(new_arguments), std::next(std::begin(arguments), 2), std::end(arguments));
2020-11-18 09:35:32 +00:00
try
{
return wrapper_function(new_arguments, result_type, nullptr, input_rows_count);
}
catch (Exception & e)
{
if (diagnostic)
e.addMessage("while converting source column " + backQuoteIfNeed(diagnostic->column_from) +
" to destination column " + backQuoteIfNeed(diagnostic->column_to));
throw;
}
2018-02-02 08:33:36 +00:00
}
bool useDefaultImplementationForNulls() const override { return false; }
2022-05-19 10:13:44 +00:00
/// CAST(Nothing, T) -> T
bool useDefaultImplementationForNothing() const override { return false; }
2018-02-02 08:33:36 +00:00
bool useDefaultImplementationForConstants() const override { return true; }
bool useDefaultImplementationForLowCardinalityColumns() const override { return false; }
2018-02-02 08:33:36 +00:00
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }
private:
2018-02-02 08:33:36 +00:00
WrapperType wrapper_function;
const char * name;
2023-11-10 04:23:50 +00:00
std::optional<CastDiagnostic> diagnostic;
2018-02-02 08:33:36 +00:00
};
2021-08-07 08:11:40 +00:00
struct CastName { static constexpr auto name = "CAST"; };
struct CastInternalName { static constexpr auto name = "_CAST"; };
2021-08-07 08:11:40 +00:00
class FunctionCastBase : public IFunctionBase
2018-02-02 08:33:36 +00:00
{
public:
using MonotonicityForRange = std::function<Monotonicity(const IDataType &, const Field &, const Field &)>;
2021-08-07 08:11:40 +00:00
};
2018-02-02 08:33:36 +00:00
2021-08-07 08:11:40 +00:00
template <typename FunctionName>
class FunctionCast final : public FunctionCastBase
{
public:
using WrapperType = std::function<ColumnPtr(ColumnsWithTypeAndName &, const DataTypePtr &, const ColumnNullable *, size_t)>;
FunctionCast(ContextPtr context_
, const char * cast_name_
2021-08-07 08:11:40 +00:00
, MonotonicityForRange && monotonicity_for_range_
, const DataTypes & argument_types_
, const DataTypePtr & return_type_
2023-11-10 04:23:50 +00:00
, std::optional<CastDiagnostic> diagnostic_
, CastType cast_type_)
2021-08-07 08:11:40 +00:00
: cast_name(cast_name_), monotonicity_for_range(std::move(monotonicity_for_range_))
2020-11-18 09:35:32 +00:00
, argument_types(argument_types_), return_type(return_type_), diagnostic(std::move(diagnostic_))
, cast_type(cast_type_)
, context(context_)
2018-02-02 08:33:36 +00:00
{
}
const DataTypes & getArgumentTypes() const override { return argument_types; }
2020-10-17 14:23:37 +00:00
const DataTypePtr & getResultType() const override { return return_type; }
2018-02-02 08:33:36 +00:00
2021-05-15 17:33:15 +00:00
ExecutableFunctionPtr prepare(const ColumnsWithTypeAndName & /*sample_columns*/) const override
2018-02-02 08:33:36 +00:00
{
2020-11-18 09:45:46 +00:00
try
{
return std::make_unique<ExecutableFunctionCast>(
2021-08-07 08:11:40 +00:00
prepareUnpackDictionaries(getArgumentTypes()[0], getResultType()), cast_name, diagnostic);
2020-11-18 09:45:46 +00:00
}
catch (Exception & e)
{
if (diagnostic)
e.addMessage("while converting source column " + backQuoteIfNeed(diagnostic->column_from) +
" to destination column " + backQuoteIfNeed(diagnostic->column_to));
throw;
}
2018-02-02 08:33:36 +00:00
}
2021-08-07 08:11:40 +00:00
String getName() const override { return cast_name; }
2018-02-02 08:33:36 +00:00
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
2018-02-02 08:33:36 +00:00
bool hasInformationAboutMonotonicity() const override
{
return static_cast<bool>(monotonicity_for_range);
}
Monotonicity getMonotonicityForRange(const IDataType & type, const Field & left, const Field & right) const override
{
return monotonicity_for_range(type, left, right);
}
private:
2021-08-07 08:11:40 +00:00
const char * cast_name;
2018-02-02 08:33:36 +00:00
MonotonicityForRange monotonicity_for_range;
DataTypes argument_types;
DataTypePtr return_type;
2023-11-10 04:23:50 +00:00
std::optional<CastDiagnostic> diagnostic;
CastType cast_type;
ContextPtr context;
2020-11-18 09:35:32 +00:00
static WrapperType createFunctionAdaptor(FunctionPtr function, const DataTypePtr & from_type)
{
2021-05-15 17:33:15 +00:00
auto function_adaptor = std::make_unique<FunctionToOverloadResolverAdaptor>(function)->build({ColumnWithTypeAndName{nullptr, from_type, ""}});
2020-11-10 13:18:58 +00:00
return [function_adaptor]
(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable *, size_t input_rows_count)
{
2020-10-17 14:23:37 +00:00
return function_adaptor->execute(arguments, result_type, input_rows_count);
};
}
static WrapperType createToNullableColumnWrapper()
{
2020-11-05 19:09:17 +00:00
return [] (ColumnsWithTypeAndName &, const DataTypePtr & result_type, const ColumnNullable *, size_t input_rows_count)
{
2020-11-05 19:09:17 +00:00
ColumnPtr res = result_type->createColumn();
ColumnUInt8::Ptr col_null_map_to = ColumnUInt8::create(input_rows_count, true);
return ColumnNullable::create(res->cloneResized(input_rows_count), std::move(col_null_map_to));
};
}
2020-11-05 19:09:17 +00:00
template <typename ToDataType>
2020-11-12 11:27:02 +00:00
WrapperType createWrapper(const DataTypePtr & from_type, const ToDataType * const to_type, bool requested_result_is_nullable) const
{
2020-11-05 19:09:17 +00:00
TypeIndex from_type_index = from_type->getTypeId();
WhichDataType which(from_type_index);
bool can_apply_accurate_cast = (cast_type == CastType::accurate || cast_type == CastType::accurateOrNull)
&& (which.isInt() || which.isUInt() || which.isFloat());
FormatSettings::DateTimeOverflowBehavior date_time_overflow_behavior = default_date_time_overflow_behavior;
if (context)
date_time_overflow_behavior = context->getSettingsRef().date_time_overflow_behavior;
2020-11-05 19:09:17 +00:00
if (requested_result_is_nullable && checkAndGetDataType<DataTypeString>(from_type.get()))
{
/// In case when converting to Nullable type, we apply different parsing rule,
/// that will not throw an exception but return NULL in case of malformed input.
2021-12-20 23:59:08 +00:00
2021-08-07 08:11:40 +00:00
FunctionPtr function = FunctionConvertFromString<ToDataType, FunctionName, ConvertFromStringExceptionMode::Null>::create();
2020-11-05 19:09:17 +00:00
return createFunctionAdaptor(function, from_type);
}
else if (!can_apply_accurate_cast)
{
FunctionPtr function = FunctionTo<ToDataType>::Type::create(context);
2020-11-05 19:09:17 +00:00
return createFunctionAdaptor(function, from_type);
}
auto wrapper_cast_type = cast_type;
2020-11-12 11:27:02 +00:00
return [wrapper_cast_type, from_type_index, to_type, date_time_overflow_behavior]
2020-11-15 19:24:15 +00:00
(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable *column_nullable, size_t input_rows_count)
{
2020-11-05 19:09:17 +00:00
ColumnPtr result_column;
2020-11-12 15:56:17 +00:00
auto res = callOnIndexAndDataType<ToDataType>(from_type_index, [&](const auto & types) -> bool {
2020-11-05 19:09:17 +00:00
using Types = std::decay_t<decltype(types)>;
using LeftDataType = typename Types::LeftType;
using RightDataType = typename Types::RightType;
2023-06-09 12:06:43 +00:00
if constexpr (IsDataTypeNumber<LeftDataType>)
2020-11-05 19:09:17 +00:00
{
2023-06-09 12:06:43 +00:00
if constexpr (IsDataTypeNumber<RightDataType>)
{
#define GENERATE_OVERFLOW_MODE_CASE(OVERFLOW_MODE, ADDITIONS) \
case FormatSettings::DateTimeOverflowBehavior::OVERFLOW_MODE: \
result_column = ConvertImpl<LeftDataType, RightDataType, FunctionName, ConvertDefaultBehaviorTag, FormatSettings::DateTimeOverflowBehavior::OVERFLOW_MODE>::execute( \
arguments, result_type, input_rows_count, ADDITIONS()); \
break;
2023-06-09 12:06:43 +00:00
if (wrapper_cast_type == CastType::accurate)
{
switch (date_time_overflow_behavior)
{
2023-10-23 13:01:45 +00:00
GENERATE_OVERFLOW_MODE_CASE(Throw, AccurateConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Ignore, AccurateConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Saturate, AccurateConvertStrategyAdditions)
}
2023-06-09 12:06:43 +00:00
}
else
{
switch (date_time_overflow_behavior)
{
2023-10-23 13:01:45 +00:00
GENERATE_OVERFLOW_MODE_CASE(Throw, AccurateOrNullConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Ignore, AccurateOrNullConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Saturate, AccurateOrNullConvertStrategyAdditions)
}
2023-06-09 12:06:43 +00:00
}
#undef GENERATE_OVERFLOW_MODE_CASE
2023-06-09 12:06:43 +00:00
return true;
}
2023-06-09 12:06:43 +00:00
if constexpr (std::is_same_v<RightDataType, DataTypeDate> || std::is_same_v<RightDataType, DataTypeDateTime>)
{
#define GENERATE_OVERFLOW_MODE_CASE(OVERFLOW_MODE, ADDITIONS) \
case FormatSettings::DateTimeOverflowBehavior::OVERFLOW_MODE: \
result_column = ConvertImpl<LeftDataType, RightDataType, FunctionName, ConvertDefaultBehaviorTag, FormatSettings::DateTimeOverflowBehavior::OVERFLOW_MODE>::template execute<ADDITIONS>( \
arguments, result_type, input_rows_count); \
break;
2023-06-09 12:06:43 +00:00
if (wrapper_cast_type == CastType::accurate)
{
switch (date_time_overflow_behavior)
{
2023-10-23 13:01:45 +00:00
GENERATE_OVERFLOW_MODE_CASE(Throw, DateTimeAccurateConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Ignore, DateTimeAccurateConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Saturate, DateTimeAccurateConvertStrategyAdditions)
}
2023-06-09 12:06:43 +00:00
}
else
{
switch (date_time_overflow_behavior)
{
2023-10-23 13:01:45 +00:00
GENERATE_OVERFLOW_MODE_CASE(Throw, DateTimeAccurateOrNullConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Ignore, DateTimeAccurateOrNullConvertStrategyAdditions)
GENERATE_OVERFLOW_MODE_CASE(Saturate, DateTimeAccurateOrNullConvertStrategyAdditions)
}
2023-06-09 12:06:43 +00:00
}
#undef GENERATE_OVERFLOW_MODE_CASE
2023-06-09 12:06:43 +00:00
return true;
}
2020-11-05 19:09:17 +00:00
}
return false;
});
/// Additionally check if callOnIndexAndDataType wasn't called at all.
if (!res)
{
if (wrapper_cast_type == CastType::accurateOrNull)
{
2021-08-07 08:11:40 +00:00
auto nullable_column_wrapper = FunctionCast<FunctionName>::createToNullableColumnWrapper();
2020-11-12 11:27:02 +00:00
return nullable_column_wrapper(arguments, result_type, column_nullable, input_rows_count);
}
2020-11-12 11:27:02 +00:00
else
{
2021-09-06 15:59:46 +00:00
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE,
"Conversion from {} to {} is not supported",
from_type_index, to_type->getName());
2020-11-12 11:27:02 +00:00
}
2020-11-05 19:09:17 +00:00
}
return result_column;
};
}
2021-12-20 20:24:16 +00:00
template <typename ToDataType>
WrapperType createBoolWrapper(const DataTypePtr & from_type, const ToDataType * const to_type, bool requested_result_is_nullable) const
{
if (checkAndGetDataType<DataTypeString>(from_type.get()))
{
2021-12-23 17:14:54 +00:00
return &ConvertImplGenericFromString<ColumnString>::execute;
2021-12-20 20:24:16 +00:00
}
return createWrapper<ToDataType>(from_type, to_type, requested_result_is_nullable);
}
2022-03-23 18:59:26 +00:00
WrapperType createUInt8ToBoolWrapper(const DataTypePtr from_type, const DataTypePtr to_type) const
2021-12-20 23:59:08 +00:00
{
return [from_type, to_type] (ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable *, size_t /*input_rows_count*/) -> ColumnPtr
{
/// Special case when we convert UInt8 column to Bool column.
/// both columns have type UInt8, but we shouldn't use identity wrapper,
/// because Bool column can contain only 0 and 1.
auto res_column = to_type->createColumn();
const auto & data_from = checkAndGetColumn<ColumnUInt8>(arguments[0].column.get())->getData();
auto & data_to = assert_cast<ColumnUInt8 *>(res_column.get())->getData();
data_to.resize(data_from.size());
for (size_t i = 0; i != data_from.size(); ++i)
data_to[i] = static_cast<bool>(data_from[i]);
return res_column;
};
}
static WrapperType createStringWrapper(const DataTypePtr & from_type)
{
2020-11-05 19:09:17 +00:00
FunctionPtr function = FunctionToString::create();
return createFunctionAdaptor(function, from_type);
}
2020-11-05 19:09:17 +00:00
WrapperType createFixedStringWrapper(const DataTypePtr & from_type, const size_t N) const
{
if (!isStringOrFixedString(from_type))
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "CAST AS FixedString is only implemented for types String and FixedString");
bool exception_mode_null = cast_type == CastType::accurateOrNull;
2020-11-05 19:09:17 +00:00
return [exception_mode_null, N] (ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable *, size_t /*input_rows_count*/)
{
2020-11-05 19:09:17 +00:00
if (exception_mode_null)
return FunctionToFixedString::executeForN<ConvertToFixedStringExceptionMode::Null>(arguments, N);
else
return FunctionToFixedString::executeForN<ConvertToFixedStringExceptionMode::Throw>(arguments, N);
};
}
2022-11-12 22:58:09 +00:00
#define GENERATE_INTERVAL_CASE(INTERVAL_KIND) \
case IntervalKind::INTERVAL_KIND: \
return createFunctionAdaptor(FunctionConvert<DataTypeInterval, NameToInterval##INTERVAL_KIND, PositiveMonotonicity>::create(), from_type);
static WrapperType createIntervalWrapper(const DataTypePtr & from_type, IntervalKind kind)
{
switch (kind)
{
GENERATE_INTERVAL_CASE(Nanosecond)
GENERATE_INTERVAL_CASE(Microsecond)
GENERATE_INTERVAL_CASE(Millisecond)
GENERATE_INTERVAL_CASE(Second)
GENERATE_INTERVAL_CASE(Minute)
GENERATE_INTERVAL_CASE(Hour)
GENERATE_INTERVAL_CASE(Day)
GENERATE_INTERVAL_CASE(Week)
GENERATE_INTERVAL_CASE(Month)
GENERATE_INTERVAL_CASE(Quarter)
GENERATE_INTERVAL_CASE(Year)
}
throw Exception{ErrorCodes::CANNOT_CONVERT_TYPE, "Conversion to unexpected IntervalKind: {}", kind.toString()};
}
#undef GENERATE_INTERVAL_CASE
template <typename ToDataType>
requires IsDataTypeDecimal<ToDataType>
WrapperType createDecimalWrapper(const DataTypePtr & from_type, const ToDataType * to_type, bool requested_result_is_nullable) const
2018-08-31 08:59:21 +00:00
{
TypeIndex type_index = from_type->getTypeId();
UInt32 scale = to_type->getScale();
WhichDataType which(type_index);
2021-07-15 11:40:45 +00:00
bool ok = which.isNativeInt() || which.isNativeUInt() || which.isDecimal() || which.isFloat() || which.isDateOrDate32() || which.isDateTime() || which.isDateTime64()
2020-11-12 15:56:17 +00:00
|| which.isStringOrFixedString();
if (!ok)
2020-11-10 13:18:58 +00:00
{
if (cast_type == CastType::accurateOrNull)
2020-11-05 19:09:17 +00:00
return createToNullableColumnWrapper();
2020-11-10 13:18:58 +00:00
else
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Conversion from {} to {} is not supported",
from_type->getName(), to_type->getName());
2020-11-05 19:09:17 +00:00
}
auto wrapper_cast_type = cast_type;
2021-01-04 14:52:07 +00:00
return [wrapper_cast_type, type_index, scale, to_type, requested_result_is_nullable]
2020-11-12 11:27:02 +00:00
(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable *column_nullable, size_t input_rows_count)
2018-08-31 08:59:21 +00:00
{
2020-10-17 14:23:37 +00:00
ColumnPtr result_column;
2021-01-04 14:52:07 +00:00
auto res = callOnIndexAndDataType<ToDataType>(type_index, [&](const auto & types) -> bool
{
2018-08-31 08:59:21 +00:00
using Types = std::decay_t<decltype(types)>;
using LeftDataType = typename Types::LeftType;
using RightDataType = typename Types::RightType;
if constexpr (IsDataTypeDecimalOrNumber<LeftDataType> && IsDataTypeDecimalOrNumber<RightDataType> && !std::is_same_v<DataTypeDateTime64, RightDataType>)
2020-11-12 11:27:02 +00:00
{
if (wrapper_cast_type == CastType::accurate)
2020-11-12 11:27:02 +00:00
{
AccurateConvertStrategyAdditions additions;
2020-11-12 11:27:02 +00:00
additions.scale = scale;
2021-08-07 08:11:40 +00:00
result_column = ConvertImpl<LeftDataType, RightDataType, FunctionName>::execute(
arguments, result_type, input_rows_count, additions);
return true;
}
else if (wrapper_cast_type == CastType::accurateOrNull)
{
AccurateOrNullConvertStrategyAdditions additions;
additions.scale = scale;
2021-08-07 08:11:40 +00:00
result_column = ConvertImpl<LeftDataType, RightDataType, FunctionName>::execute(
arguments, result_type, input_rows_count, additions);
2020-11-12 11:27:02 +00:00
return true;
}
}
2021-01-04 14:52:07 +00:00
else if constexpr (std::is_same_v<LeftDataType, DataTypeString>)
{
2021-01-04 14:52:07 +00:00
if (requested_result_is_nullable)
{
/// Consistent with CAST(Nullable(String) AS Nullable(Numbers))
/// In case when converting to Nullable type, we apply different parsing rule,
/// that will not throw an exception but return NULL in case of malformed input.
2021-08-07 08:11:40 +00:00
result_column = ConvertImpl<LeftDataType, RightDataType, FunctionName, ConvertReturnNullOnErrorTag>::execute(
2021-01-04 14:52:07 +00:00
arguments, result_type, input_rows_count, scale);
return true;
}
}
2020-11-12 11:27:02 +00:00
2021-08-07 08:11:40 +00:00
result_column = ConvertImpl<LeftDataType, RightDataType, FunctionName>::execute(arguments, result_type, input_rows_count, scale);
2020-11-12 11:27:02 +00:00
2018-08-31 08:59:21 +00:00
return true;
});
2019-08-05 15:23:32 +00:00
/// Additionally check if callOnIndexAndDataType wasn't called at all.
if (!res)
{
if (wrapper_cast_type == CastType::accurateOrNull)
{
2021-08-07 08:11:40 +00:00
auto nullable_column_wrapper = FunctionCast<FunctionName>::createToNullableColumnWrapper();
2020-11-12 11:27:02 +00:00
return nullable_column_wrapper(arguments, result_type, column_nullable, input_rows_count);
}
2020-11-10 13:18:58 +00:00
else
2021-09-06 15:59:46 +00:00
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE,
"Conversion from {} to {} is not supported",
type_index, to_type->getName());
2019-08-05 15:23:32 +00:00
}
2020-10-17 14:23:37 +00:00
return result_column;
2018-08-31 08:59:21 +00:00
};
}
2020-11-05 19:09:17 +00:00
WrapperType createAggregateFunctionWrapper(const DataTypePtr & from_type_untyped, const DataTypeAggregateFunction * to_type) const
{
/// Conversion from String through parsing.
if (checkAndGetDataType<DataTypeString>(from_type_untyped.get()))
{
return &ConvertImplGenericFromString<ColumnString>::execute;
}
else if (const auto * agg_type = checkAndGetDataType<DataTypeAggregateFunction>(from_type_untyped.get()))
2020-11-05 19:09:17 +00:00
{
if (agg_type->getFunction()->haveSameStateRepresentation(*to_type->getFunction()))
{
return [function = to_type->getFunction()](
ColumnsWithTypeAndName & arguments,
const DataTypePtr & /* result_type */,
const ColumnNullable * /* nullable_source */,
size_t /*input_rows_count*/) -> ColumnPtr
{
const auto & argument_column = arguments.front();
const auto * col_agg = checkAndGetColumn<ColumnAggregateFunction>(argument_column.column.get());
if (col_agg)
{
auto new_col_agg = ColumnAggregateFunction::create(*col_agg);
2023-09-11 18:49:27 +00:00
new_col_agg->set(function);
return new_col_agg;
}
else
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Illegal column {} for function CAST AS AggregateFunction",
argument_column.column->getName());
}
};
}
2020-11-05 19:09:17 +00:00
}
if (cast_type == CastType::accurateOrNull)
return createToNullableColumnWrapper();
else
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Conversion from {} to {} is not supported",
from_type_untyped->getName(), to_type->getName());
}
2018-08-31 08:59:21 +00:00
2021-04-21 21:19:01 +00:00
WrapperType createArrayWrapper(const DataTypePtr & from_type_untyped, const DataTypeArray & to_type) const
{
/// Conversion from String through parsing.
ColumnConst unification (#1011) * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * Fixed error in ColumnArray::replicateGeneric [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150].
2017-07-21 06:35:58 +00:00
if (checkAndGetDataType<DataTypeString>(from_type_untyped.get()))
{
return &ConvertImplGenericFromString<ColumnString>::execute;
}
2023-03-30 15:54:25 +00:00
DataTypePtr from_type_holder;
2020-10-17 14:23:37 +00:00
const auto * from_type = checkAndGetDataType<DataTypeArray>(from_type_untyped.get());
2022-01-23 00:09:29 +00:00
const auto * from_type_map = checkAndGetDataType<DataTypeMap>(from_type_untyped.get());
2022-01-23 00:09:29 +00:00
/// Convert from Map
if (from_type_map)
2023-03-30 15:54:25 +00:00
{
/// Recreate array of unnamed tuples because otherwise it may work
/// unexpectedly while converting to array of named tuples.
2023-03-31 02:20:17 +00:00
from_type_holder = from_type_map->getNestedTypeWithUnnamedTuple();
2023-03-30 15:54:25 +00:00
from_type = assert_cast<const DataTypeArray *>(from_type_holder.get());
}
2021-04-21 21:19:01 +00:00
if (!from_type)
{
2021-04-21 21:19:01 +00:00
throw Exception(ErrorCodes::TYPE_MISMATCH,
"CAST AS Array can only be performed between same-dimensional Array, Map or String types");
2021-04-21 21:19:01 +00:00
}
2021-04-21 21:19:01 +00:00
DataTypePtr from_nested_type = from_type->getNestedType();
2021-04-21 21:19:01 +00:00
/// In query SELECT CAST([] AS Array(Array(String))) from type is Array(Nothing)
bool from_empty_array = isNothing(from_nested_type);
if (from_type->getNumberOfDimensions() != to_type.getNumberOfDimensions() && !from_empty_array)
throw Exception(ErrorCodes::TYPE_MISMATCH,
2021-06-07 11:52:54 +00:00
"CAST AS Array can only be performed between same-dimensional array types");
2021-04-21 21:19:01 +00:00
const DataTypePtr & to_nested_type = to_type.getNestedType();
/// Prepare nested type conversion
const auto nested_function = prepareUnpackDictionaries(from_nested_type, to_nested_type);
return [nested_function, from_nested_type, to_nested_type](
2020-10-20 13:11:57 +00:00
ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable * nullable_source, size_t /*input_rows_count*/) -> ColumnPtr
{
const auto & argument_column = arguments.front();
const ColumnArray * col_array = nullptr;
if (const ColumnMap * col_map = checkAndGetColumn<ColumnMap>(argument_column.column.get()))
col_array = &col_map->getNestedColumn();
else
col_array = checkAndGetColumn<ColumnArray>(argument_column.column.get());
if (col_array)
{
2020-10-14 14:04:50 +00:00
/// create columns for converting nested column containing original and result columns
2020-10-17 14:23:37 +00:00
ColumnsWithTypeAndName nested_columns{{ col_array->getDataPtr(), from_nested_type, "" }};
/// convert nested column
2020-10-20 13:11:57 +00:00
auto result_column = nested_function(nested_columns, to_nested_type, nullable_source, nested_columns.front().column->size());
/// set converted nested column to result
2020-10-17 14:23:37 +00:00
return ColumnArray::create(result_column, col_array->getOffsetsPtr());
}
else
{
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Illegal column {} for function CAST AS Array",
argument_column.column->getName());
}
};
}
2020-12-14 22:16:04 +00:00
using ElementWrappers = std::vector<WrapperType>;
ElementWrappers getElementWrappers(const DataTypes & from_element_types, const DataTypes & to_element_types) const
{
ElementWrappers element_wrappers;
element_wrappers.reserve(from_element_types.size());
/// Create conversion wrapper for each element in tuple
2021-06-15 19:55:21 +00:00
for (size_t i = 0; i < from_element_types.size(); ++i)
{
const DataTypePtr & from_element_type = from_element_types[i];
const DataTypePtr & to_element_type = to_element_types[i];
element_wrappers.push_back(prepareUnpackDictionaries(from_element_type, to_element_type));
}
2020-12-14 22:16:04 +00:00
return element_wrappers;
}
2018-02-02 08:33:36 +00:00
WrapperType createTupleWrapper(const DataTypePtr & from_type_untyped, const DataTypeTuple * to_type) const
{
/// Conversion from String through parsing.
ColumnConst unification (#1011) * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * Fixed error in ColumnArray::replicateGeneric [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150].
2017-07-21 06:35:58 +00:00
if (checkAndGetDataType<DataTypeString>(from_type_untyped.get()))
{
return &ConvertImplGenericFromString<ColumnString>::execute;
}
2020-10-17 14:23:37 +00:00
const auto * from_type = checkAndGetDataType<DataTypeTuple>(from_type_untyped.get());
if (!from_type)
2023-01-23 13:16:14 +00:00
throw Exception(ErrorCodes::TYPE_MISMATCH, "CAST AS Tuple can only be performed between tuple types or from String.\n"
"Left type: {}, right type: {}", from_type_untyped->getName(), to_type->getName());
const auto & from_element_types = from_type->getElements();
const auto & to_element_types = to_type->getElements();
2021-05-03 00:56:19 +00:00
std::vector<WrapperType> element_wrappers;
std::vector<std::optional<size_t>> to_reverse_index;
2022-03-01 16:32:55 +00:00
/// For named tuples allow conversions for tuples with
/// different sets of elements. If element exists in @to_type
/// and doesn't exist in @to_type it will be filled by default values.
2022-03-28 18:44:53 +00:00
if (from_type->haveExplicitNames() && to_type->haveExplicitNames())
2021-05-03 00:56:19 +00:00
{
const auto & from_names = from_type->getElementNames();
std::unordered_map<String, size_t> from_positions;
from_positions.reserve(from_names.size());
for (size_t i = 0; i < from_names.size(); ++i)
from_positions[from_names[i]] = i;
const auto & to_names = to_type->getElementNames();
element_wrappers.reserve(to_names.size());
to_reverse_index.reserve(from_names.size());
for (size_t i = 0; i < to_names.size(); ++i)
{
auto it = from_positions.find(to_names[i]);
if (it != from_positions.end())
{
element_wrappers.emplace_back(prepareUnpackDictionaries(from_element_types[it->second], to_element_types[i]));
to_reverse_index.emplace_back(it->second);
}
else
{
element_wrappers.emplace_back();
to_reverse_index.emplace_back();
}
}
}
else
{
if (from_element_types.size() != to_element_types.size())
2023-01-23 13:16:14 +00:00
throw Exception(ErrorCodes::TYPE_MISMATCH, "CAST AS Tuple can only be performed between tuple types "
"with the same number of elements or from String.\nLeft type: {}, right type: {}",
from_type->getName(), to_type->getName());
2021-05-03 00:56:19 +00:00
element_wrappers = getElementWrappers(from_element_types, to_element_types);
to_reverse_index.reserve(to_element_types.size());
for (size_t i = 0; i < to_element_types.size(); ++i)
to_reverse_index.emplace_back(i);
}
return [element_wrappers, from_element_types, to_element_types, to_reverse_index]
2020-10-20 13:11:57 +00:00
(ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable * nullable_source, size_t input_rows_count) -> ColumnPtr
{
2020-10-17 14:23:37 +00:00
const auto * col = arguments.front().column.get();
2021-05-03 00:56:19 +00:00
size_t tuple_size = to_element_types.size();
const ColumnTuple & column_tuple = typeid_cast<const ColumnTuple &>(*col);
2020-10-17 14:23:37 +00:00
Columns converted_columns(tuple_size);
/// invoke conversion for each element
for (size_t i = 0; i < tuple_size; ++i)
2020-10-17 14:23:37 +00:00
{
2021-05-03 00:56:19 +00:00
if (to_reverse_index[i])
{
size_t from_idx = *to_reverse_index[i];
ColumnsWithTypeAndName element = {{column_tuple.getColumns()[from_idx], from_element_types[from_idx], "" }};
converted_columns[i] = element_wrappers[i](element, to_element_types[i], nullable_source, input_rows_count);
}
else
{
converted_columns[i] = to_element_types[i]->createColumn()->cloneResized(input_rows_count);
}
2020-10-17 14:23:37 +00:00
}
2020-10-17 14:23:37 +00:00
return ColumnTuple::create(converted_columns);
};
}
2020-12-15 22:22:21 +00:00
/// The case of: tuple([key1, key2, ..., key_n], [value1, value2, ..., value_n])
2020-12-14 22:16:04 +00:00
WrapperType createTupleToMapWrapper(const DataTypes & from_kv_types, const DataTypes & to_kv_types) const
{
return [element_wrappers = getElementWrappers(from_kv_types, to_kv_types), from_kv_types, to_kv_types]
2021-02-23 10:42:33 +00:00
(ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable * nullable_source, size_t /*input_rows_count*/) -> ColumnPtr
2020-12-14 22:16:04 +00:00
{
const auto * col = arguments.front().column.get();
const auto & column_tuple = assert_cast<const ColumnTuple &>(*col);
Columns offsets(2);
2020-12-14 22:16:04 +00:00
Columns converted_columns(2);
for (size_t i = 0; i < 2; ++i)
{
const auto & column_array = assert_cast<const ColumnArray &>(column_tuple.getColumn(i));
ColumnsWithTypeAndName element = {{column_array.getDataPtr(), from_kv_types[i], ""}};
2021-02-23 10:42:33 +00:00
converted_columns[i] = element_wrappers[i](element, to_kv_types[i], nullable_source, (element[0].column)->size());
offsets[i] = column_array.getOffsetsPtr();
2020-12-14 22:16:04 +00:00
}
const auto & keys_offsets = assert_cast<const ColumnArray::ColumnOffsets &>(*offsets[0]).getData();
const auto & values_offsets = assert_cast<const ColumnArray::ColumnOffsets &>(*offsets[1]).getData();
if (keys_offsets != values_offsets)
throw Exception(ErrorCodes::TYPE_MISMATCH,
"CAST AS Map can only be performed from tuple of arrays with equal sizes.");
return ColumnMap::create(converted_columns[0], converted_columns[1], offsets[0]);
2020-12-14 22:16:04 +00:00
};
}
2023-04-26 18:45:11 +00:00
WrapperType createMapToMapWrapper(const DataTypes & from_kv_types, const DataTypes & to_kv_types) const
2020-12-14 22:16:04 +00:00
{
return [element_wrappers = getElementWrappers(from_kv_types, to_kv_types), from_kv_types, to_kv_types]
(ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable * nullable_source, size_t /*input_rows_count*/) -> ColumnPtr
2020-12-14 22:16:04 +00:00
{
const auto * col = arguments.front().column.get();
const auto & column_map = typeid_cast<const ColumnMap &>(*col);
const auto & nested_data = column_map.getNestedData();
Columns converted_columns(2);
for (size_t i = 0; i < 2; ++i)
{
ColumnsWithTypeAndName element = {{nested_data.getColumnPtr(i), from_kv_types[i], ""}};
converted_columns[i] = element_wrappers[i](element, to_kv_types[i], nullable_source, (element[0].column)->size());
2020-12-14 22:16:04 +00:00
}
return ColumnMap::create(converted_columns[0], converted_columns[1], column_map.getNestedColumn().getOffsetsPtr());
};
}
2020-12-15 22:22:21 +00:00
/// The case of: [(key1, value1), (key2, value2), ...]
2023-04-26 18:45:11 +00:00
WrapperType createArrayToMapWrapper(const DataTypes & from_kv_types, const DataTypes & to_kv_types) const
2020-12-14 22:16:04 +00:00
{
return [element_wrappers = getElementWrappers(from_kv_types, to_kv_types), from_kv_types, to_kv_types]
(ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable * nullable_source, size_t /*input_rows_count*/) -> ColumnPtr
2020-12-14 22:16:04 +00:00
{
const auto * col = arguments.front().column.get();
const auto & column_array = typeid_cast<const ColumnArray &>(*col);
const auto & nested_data = typeid_cast<const ColumnTuple &>(column_array.getData());
Columns converted_columns(2);
for (size_t i = 0; i < 2; ++i)
{
ColumnsWithTypeAndName element = {{nested_data.getColumnPtr(i), from_kv_types[i], ""}};
converted_columns[i] = element_wrappers[i](element, to_kv_types[i], nullable_source, (element[0].column)->size());
2020-12-14 22:16:04 +00:00
}
return ColumnMap::create(converted_columns[0], converted_columns[1], column_array.getOffsetsPtr());
};
}
2020-10-10 06:49:03 +00:00
WrapperType createMapWrapper(const DataTypePtr & from_type_untyped, const DataTypeMap * to_type) const
{
2020-12-03 03:52:41 +00:00
if (const auto * from_tuple = checkAndGetDataType<DataTypeTuple>(from_type_untyped.get()))
{
2020-12-03 03:52:41 +00:00
if (from_tuple->getElements().size() != 2)
2023-04-26 18:45:11 +00:00
throw Exception(
ErrorCodes::TYPE_MISMATCH,
"CAST AS Map from tuple requires 2 elements. "
"Left type: {}, right type: {}",
from_tuple->getName(),
to_type->getName());
2020-12-03 03:52:41 +00:00
DataTypes from_kv_types;
const auto & to_kv_types = to_type->getKeyValueTypes();
for (const auto & elem : from_tuple->getElements())
{
const auto * type_array = checkAndGetDataType<DataTypeArray>(elem.get());
if (!type_array)
throw Exception(ErrorCodes::TYPE_MISMATCH,
"CAST AS Map can only be performed from tuples of array. Got: {}", from_tuple->getName());
from_kv_types.push_back(type_array->getNestedType());
}
2020-12-14 22:16:04 +00:00
return createTupleToMapWrapper(from_kv_types, to_kv_types);
}
else if (const auto * from_array = typeid_cast<const DataTypeArray *>(from_type_untyped.get()))
{
const auto * nested_tuple = typeid_cast<const DataTypeTuple *>(from_array->getNestedType().get());
if (!nested_tuple || nested_tuple->getElements().size() != 2)
2023-04-26 18:45:11 +00:00
throw Exception(
ErrorCodes::TYPE_MISMATCH,
"CAST AS Map from array requires nested tuple of 2 elements. "
"Left type: {}, right type: {}",
from_array->getName(),
to_type->getName());
2020-12-03 03:52:41 +00:00
2023-04-26 18:45:11 +00:00
return createArrayToMapWrapper(nested_tuple->getElements(), to_type->getKeyValueTypes());
}
2020-12-03 03:52:41 +00:00
else if (const auto * from_type = checkAndGetDataType<DataTypeMap>(from_type_untyped.get()))
2020-10-10 06:49:03 +00:00
{
2023-04-26 18:45:11 +00:00
return createMapToMapWrapper(from_type->getKeyValueTypes(), to_type->getKeyValueTypes());
2020-11-02 09:23:02 +00:00
}
else
{
2023-01-23 13:16:14 +00:00
throw Exception(ErrorCodes::TYPE_MISMATCH, "Unsupported types to CAST AS Map. "
"Left type: {}, right type: {}", from_type_untyped->getName(), to_type->getName());
2020-11-02 09:23:02 +00:00
}
2020-10-10 06:49:03 +00:00
}
WrapperType createTupleToObjectWrapper(const DataTypeTuple & from_tuple, bool has_nullable_subcolumns) const
2021-08-10 01:33:57 +00:00
{
if (!from_tuple.haveExplicitNames())
throw Exception(ErrorCodes::TYPE_MISMATCH,
"Cast to Object can be performed only from flatten Named Tuple. Got: {}", from_tuple.getName());
PathsInData paths;
DataTypes from_types;
std::tie(paths, from_types) = flattenTuple(from_tuple.getPtr());
auto to_types = from_types;
for (auto & type : to_types)
2021-08-10 01:33:57 +00:00
{
if (isTuple(type) || isNested(type))
throw Exception(ErrorCodes::TYPE_MISMATCH,
"Cast to Object can be performed only from flatten Named Tuple. Got: {}",
from_tuple.getName());
2021-08-10 01:33:57 +00:00
type = recursiveRemoveLowCardinality(type);
}
2022-01-27 00:24:34 +00:00
return [element_wrappers = getElementWrappers(from_types, to_types),
has_nullable_subcolumns, from_types, to_types, paths]
(ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable * nullable_source, size_t input_rows_count)
{
size_t tuple_size = to_types.size();
auto flattened_column = flattenTuple(arguments.front().column);
const auto & column_tuple = assert_cast<const ColumnTuple &>(*flattened_column);
2021-08-10 01:33:57 +00:00
if (tuple_size != column_tuple.getColumns().size())
throw Exception(ErrorCodes::TYPE_MISMATCH,
"Expected tuple with {} subcolumn, but got {} subcolumns",
tuple_size, column_tuple.getColumns().size());
2021-08-10 01:33:57 +00:00
auto res = ColumnObject::create(has_nullable_subcolumns);
for (size_t i = 0; i < tuple_size; ++i)
{
ColumnsWithTypeAndName element = {{column_tuple.getColumns()[i], from_types[i], "" }};
auto converted_column = element_wrappers[i](element, to_types[i], nullable_source, input_rows_count);
res->addSubcolumn(paths[i], converted_column->assumeMutable());
2021-08-10 01:33:57 +00:00
}
return res;
};
}
WrapperType createMapToObjectWrapper(const DataTypeMap & from_map, bool has_nullable_subcolumns) const
{
auto key_value_types = from_map.getKeyValueTypes();
if (!isStringOrFixedString(key_value_types[0]))
throw Exception(ErrorCodes::TYPE_MISMATCH,
"Cast to Object from Map can be performed only from Map "
"with String or FixedString key. Got: {}", from_map.getName());
const auto & value_type = key_value_types[1];
auto to_value_type = value_type;
if (!has_nullable_subcolumns && value_type->isNullable())
to_value_type = removeNullable(value_type);
if (has_nullable_subcolumns && !value_type->isNullable())
to_value_type = makeNullable(value_type);
DataTypes to_key_value_types{std::make_shared<DataTypeString>(), std::move(to_value_type)};
auto element_wrappers = getElementWrappers(key_value_types, to_key_value_types);
return [has_nullable_subcolumns, element_wrappers, key_value_types, to_key_value_types]
(ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable * nullable_source, size_t) -> ColumnPtr
{
const auto & column_map = assert_cast<const ColumnMap &>(*arguments.front().column);
const auto & offsets = column_map.getNestedColumn().getOffsets();
auto key_value_columns = column_map.getNestedData().getColumnsCopy();
for (size_t i = 0; i < 2; ++i)
2021-08-10 01:33:57 +00:00
{
ColumnsWithTypeAndName element{{key_value_columns[i], key_value_types[i], ""}};
key_value_columns[i] = element_wrappers[i](element, to_key_value_types[i], nullable_source, key_value_columns[i]->size());
}
2022-01-27 00:24:34 +00:00
const auto & key_column_str = assert_cast<const ColumnString &>(*key_value_columns[0]);
const auto & value_column = *key_value_columns[1];
2021-08-10 01:33:57 +00:00
using SubcolumnsMap = HashMap<StringRef, MutableColumnPtr, StringRefHash>;
SubcolumnsMap subcolumns;
for (size_t row = 0; row < offsets.size(); ++row)
{
for (size_t i = offsets[static_cast<ssize_t>(row) - 1]; i < offsets[row]; ++i)
2021-08-10 01:33:57 +00:00
{
auto ref = key_column_str.getDataAt(i);
bool inserted;
SubcolumnsMap::LookupResult it;
subcolumns.emplace(ref, it, inserted);
auto & subcolumn = it->getMapped();
if (inserted)
subcolumn = value_column.cloneEmpty()->cloneResized(row);
/// Map can have duplicated keys. We insert only first one.
if (subcolumn->size() == row)
subcolumn->insertFrom(value_column, i);
2021-08-10 01:33:57 +00:00
}
/// Insert default values for keys missed in current row.
for (const auto & [_, subcolumn] : subcolumns)
if (subcolumn->size() == row)
subcolumn->insertDefault();
}
auto column_object = ColumnObject::create(has_nullable_subcolumns);
for (auto && [key, subcolumn] : subcolumns)
{
PathInData path(key.toView());
column_object->addSubcolumn(path, std::move(subcolumn));
}
return column_object;
};
}
WrapperType createObjectWrapper(const DataTypePtr & from_type, const DataTypeObject * to_type) const
{
if (const auto * from_tuple = checkAndGetDataType<DataTypeTuple>(from_type.get()))
{
return createTupleToObjectWrapper(*from_tuple, to_type->hasNullableSubcolumns());
}
else if (const auto * from_map = checkAndGetDataType<DataTypeMap>(from_type.get()))
{
return createMapToObjectWrapper(*from_map, to_type->hasNullableSubcolumns());
2021-08-10 01:33:57 +00:00
}
else if (checkAndGetDataType<DataTypeString>(from_type.get()))
{
return [] (ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable * nullable_source, size_t input_rows_count)
2021-08-10 01:33:57 +00:00
{
2022-05-06 14:44:00 +00:00
auto res = ConvertImplGenericFromString<ColumnString>::execute(arguments, result_type, nullable_source, input_rows_count)->assumeMutable();
res->finalize();
2021-08-21 00:31:44 +00:00
return res;
2021-08-10 01:33:57 +00:00
};
}
else if (checkAndGetDataType<DataTypeObject>(from_type.get()))
{
return [is_nullable = to_type->hasNullableSubcolumns()] (ColumnsWithTypeAndName & arguments, const DataTypePtr & , const ColumnNullable * , size_t) -> ColumnPtr
{
auto & column_object = assert_cast<const ColumnObject &>(*arguments.front().column);
auto res = ColumnObject::create(is_nullable);
for (size_t i = 0; i < column_object.size(); i++)
res->insert(column_object[i]);
res->finalize();
return res;
};
}
2021-08-10 01:33:57 +00:00
throw Exception(ErrorCodes::TYPE_MISMATCH,
"Cast to Object can be performed only from flatten named Tuple, Map or String. Got: {}", from_type->getName());
2021-08-10 01:33:57 +00:00
}
template <typename FieldType>
2020-10-20 13:11:57 +00:00
WrapperType createEnumWrapper(const DataTypePtr & from_type, const DataTypeEnum<FieldType> * to_type) const
{
using EnumType = DataTypeEnum<FieldType>;
using Function = typename FunctionTo<EnumType>::Type;
2020-10-17 14:23:37 +00:00
if (const auto * from_enum8 = checkAndGetDataType<DataTypeEnum8>(from_type.get()))
checkEnumToEnumConversion(from_enum8, to_type);
2020-10-17 14:23:37 +00:00
else if (const auto * from_enum16 = checkAndGetDataType<DataTypeEnum16>(from_type.get()))
checkEnumToEnumConversion(from_enum16, to_type);
ColumnConst unification (#1011) * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * Fixed error in ColumnArray::replicateGeneric [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150].
2017-07-21 06:35:58 +00:00
if (checkAndGetDataType<DataTypeString>(from_type.get()))
2020-10-20 13:11:57 +00:00
return createStringToEnumWrapper<ColumnString, EnumType>();
ColumnConst unification (#1011) * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * Fixed error in ColumnArray::replicateGeneric [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150]. * ColumnConst: unification (incomplete) [#CLICKHOUSE-3150].
2017-07-21 06:35:58 +00:00
else if (checkAndGetDataType<DataTypeFixedString>(from_type.get()))
2020-10-20 13:11:57 +00:00
return createStringToEnumWrapper<ColumnFixedString, EnumType>();
2019-05-24 12:11:03 +00:00
else if (isNativeNumber(from_type) || isEnum(from_type))
{
auto function = Function::create();
2020-11-05 19:09:17 +00:00
return createFunctionAdaptor(function, from_type);
}
else
2020-11-05 19:09:17 +00:00
{
if (cast_type == CastType::accurateOrNull)
2020-11-05 19:09:17 +00:00
return createToNullableColumnWrapper();
2020-11-12 15:56:17 +00:00
else
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Conversion from {} to {} is not supported",
from_type->getName(), to_type->getName());
2020-11-05 19:09:17 +00:00
}
}
template <typename EnumTypeFrom, typename EnumTypeTo>
2018-02-02 08:33:36 +00:00
void checkEnumToEnumConversion(const EnumTypeFrom * from_type, const EnumTypeTo * to_type) const
{
const auto & from_values = from_type->getValues();
const auto & to_values = to_type->getValues();
using ValueType = std::common_type_t<typename EnumTypeFrom::FieldType, typename EnumTypeTo::FieldType>;
using NameValuePair = std::pair<std::string, ValueType>;
using EnumValues = std::vector<NameValuePair>;
EnumValues name_intersection;
std::set_intersection(std::begin(from_values), std::end(from_values),
std::begin(to_values), std::end(to_values), std::back_inserter(name_intersection),
[] (auto && from, auto && to) { return from.first < to.first; });
for (const auto & name_value : name_intersection)
{
const auto & old_value = name_value.second;
const auto & new_value = to_type->getValue(name_value.first);
if (old_value != new_value)
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Enum conversion changes value for element '{}' from {} to {}",
name_value.first, toString(old_value), toString(new_value));
}
2018-08-26 00:50:48 +00:00
}
template <typename ColumnStringType, typename EnumType>
2020-10-20 13:11:57 +00:00
WrapperType createStringToEnumWrapper() const
{
2021-08-07 08:11:40 +00:00
const char * function_name = cast_name;
2020-10-20 13:11:57 +00:00
return [function_name] (
ColumnsWithTypeAndName & arguments, const DataTypePtr & res_type, const ColumnNullable * nullable_col, size_t /*input_rows_count*/)
{
2020-10-17 14:23:37 +00:00
const auto & first_col = arguments.front().column.get();
const auto & result_type = typeid_cast<const EnumType &>(*res_type);
const ColumnStringType * col = typeid_cast<const ColumnStringType *>(first_col);
2020-10-20 13:11:57 +00:00
if (col && nullable_col && nullable_col->size() != col->size())
throw Exception(ErrorCodes::LOGICAL_ERROR, "ColumnNullable is not compatible with original");
if (col)
{
const auto size = col->size();
auto res = result_type.createColumn();
auto & out_data = static_cast<typename EnumType::ColumnType &>(*res).getData();
out_data.resize(size);
2021-03-23 11:58:00 +00:00
auto default_enum_value = result_type.getValues().front().second;
if (nullable_col)
{
2021-06-15 19:55:21 +00:00
for (size_t i = 0; i < size; ++i)
{
if (!nullable_col->isNullAt(i))
out_data[i] = result_type.getValue(col->getDataAt(i));
2021-03-23 11:58:00 +00:00
else
out_data[i] = default_enum_value;
}
}
else
{
2021-06-15 19:55:21 +00:00
for (size_t i = 0; i < size; ++i)
out_data[i] = result_type.getValue(col->getDataAt(i));
}
2020-10-17 14:23:37 +00:00
return res;
}
else
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected column {} as first argument of function {}",
first_col->getName(), function_name);
};
}
template <typename EnumType>
WrapperType createEnumToStringWrapper() const
{
const char * function_name = cast_name;
return [function_name] (
ColumnsWithTypeAndName & arguments, const DataTypePtr & res_type, const ColumnNullable * nullable_col, size_t /*input_rows_count*/)
{
using ColumnEnumType = EnumType::ColumnType;
const auto & first_col = arguments.front().column.get();
const auto & first_type = arguments.front().type.get();
const ColumnEnumType * enum_col = typeid_cast<const ColumnEnumType *>(first_col);
const EnumType * enum_type = typeid_cast<const EnumType *>(first_type);
if (enum_col && nullable_col && nullable_col->size() != enum_col->size())
throw Exception(ErrorCodes::LOGICAL_ERROR, "ColumnNullable is not compatible with original");
if (enum_col && enum_type)
{
const auto size = enum_col->size();
const auto & enum_data = enum_col->getData();
auto res = res_type->createColumn();
if (nullable_col)
{
for (size_t i = 0; i < size; ++i)
{
if (!nullable_col->isNullAt(i))
{
const auto & value = enum_type->getNameForValue(enum_data[i]);
res->insertData(value.data, value.size);
}
else
res->insertDefault();
}
}
else
{
for (size_t i = 0; i < size; ++i)
{
const auto & value = enum_type->getNameForValue(enum_data[i]);
res->insertData(value.data, value.size);
}
}
return res;
}
else
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected column {} as first argument of function {}",
first_col->getName(), function_name);
};
}
2020-10-17 14:23:37 +00:00
static WrapperType createIdentityWrapper(const DataTypePtr &)
{
2020-10-20 13:11:57 +00:00
return [] (ColumnsWithTypeAndName & arguments, const DataTypePtr &, const ColumnNullable *, size_t /*input_rows_count*/)
{
2020-10-17 14:23:37 +00:00
return arguments.front().column;
};
}
2020-10-17 14:23:37 +00:00
static WrapperType createNothingWrapper(const IDataType * to_type)
{
2017-12-18 04:07:26 +00:00
ColumnPtr res = to_type->createColumnConstWithDefaultValue(1);
2020-10-20 13:11:57 +00:00
return [res] (ColumnsWithTypeAndName &, const DataTypePtr &, const ColumnNullable *, size_t input_rows_count)
{
/// Column of Nothing type is trivially convertible to any other column
2020-10-17 14:23:37 +00:00
return res->cloneResized(input_rows_count)->convertToFullColumnIfConst();
};
}
WrapperType prepareUnpackDictionaries(const DataTypePtr & from_type, const DataTypePtr & to_type) const
{
const auto * from_low_cardinality = typeid_cast<const DataTypeLowCardinality *>(from_type.get());
const auto * to_low_cardinality = typeid_cast<const DataTypeLowCardinality *>(to_type.get());
const auto & from_nested = from_low_cardinality ? from_low_cardinality->getDictionaryType() : from_type;
const auto & to_nested = to_low_cardinality ? to_low_cardinality->getDictionaryType() : to_type;
if (from_type->onlyNull())
{
if (!to_nested->isNullable())
2020-11-05 19:09:17 +00:00
{
if (cast_type == CastType::accurateOrNull)
2020-11-05 19:09:17 +00:00
{
return createToNullableColumnWrapper();
}
else
{
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Cannot convert NULL to a non-nullable type");
2020-11-05 19:09:17 +00:00
}
}
2020-10-20 13:11:57 +00:00
return [](ColumnsWithTypeAndName &, const DataTypePtr & result_type, const ColumnNullable *, size_t input_rows_count)
{
2020-10-17 14:23:37 +00:00
return result_type->createColumnConstWithDefaultValue(input_rows_count)->convertToFullColumnIfConst();
};
}
bool skip_not_null_check = false;
if (from_low_cardinality && from_nested->isNullable() && !to_nested->isNullable())
/// Disable check for dictionary. Will check that column doesn't contain NULL in wrapper below.
skip_not_null_check = true;
auto wrapper = prepareRemoveNullable(from_nested, to_nested, skip_not_null_check);
if (!from_low_cardinality && !to_low_cardinality)
return wrapper;
return [wrapper, from_low_cardinality, to_low_cardinality, skip_not_null_check]
2020-10-20 13:11:57 +00:00
(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable * nullable_source, size_t input_rows_count) -> ColumnPtr
{
2020-10-17 14:23:37 +00:00
ColumnsWithTypeAndName args = {arguments[0]};
auto & arg = args.front();
auto res_type = result_type;
ColumnPtr converted_column;
ColumnPtr res_indexes;
/// For some types default can't be casted (for example, String to Int). In that case convert column to full.
bool src_converted_to_full_column = false;
{
auto tmp_rows_count = input_rows_count;
if (to_low_cardinality)
2020-10-17 14:23:37 +00:00
res_type = to_low_cardinality->getDictionaryType();
if (from_low_cardinality)
{
2020-10-17 14:23:37 +00:00
const auto * col_low_cardinality = typeid_cast<const ColumnLowCardinality *>(arguments[0].column.get());
if (skip_not_null_check && col_low_cardinality->containsNull())
throw Exception(ErrorCodes::CANNOT_INSERT_NULL_IN_ORDINARY_COLUMN, "Cannot convert NULL value to non-Nullable type");
arg.column = col_low_cardinality->getDictionary().getNestedColumn();
arg.type = from_low_cardinality->getDictionaryType();
/// TODO: Make map with defaults conversion.
2020-10-17 14:23:37 +00:00
src_converted_to_full_column = !removeNullable(arg.type)->equals(*removeNullable(res_type));
if (src_converted_to_full_column)
arg.column = arg.column->index(col_low_cardinality->getIndexes(), 0);
else
res_indexes = col_low_cardinality->getIndexesPtr();
tmp_rows_count = arg.column->size();
}
/// Perform the requested conversion.
2020-10-20 13:11:57 +00:00
converted_column = wrapper(args, res_type, nullable_source, tmp_rows_count);
}
if (to_low_cardinality)
{
auto res_column = to_low_cardinality->createColumn();
auto * col_low_cardinality = typeid_cast<ColumnLowCardinality *>(res_column.get());
if (from_low_cardinality && !src_converted_to_full_column)
{
2020-10-17 14:23:37 +00:00
col_low_cardinality->insertRangeFromDictionaryEncodedColumn(*converted_column, *res_indexes);
}
else
2020-10-17 14:23:37 +00:00
col_low_cardinality->insertRangeFromFullColumn(*converted_column, 0, converted_column->size());
2020-10-17 14:23:37 +00:00
return res_column;
}
else if (!src_converted_to_full_column)
2020-10-17 14:23:37 +00:00
return converted_column->index(*res_indexes, 0);
else
return converted_column;
};
}
WrapperType prepareRemoveNullable(const DataTypePtr & from_type, const DataTypePtr & to_type, bool skip_not_null_check) const
{
/// Determine whether pre-processing and/or post-processing must take place during conversion.
2018-07-20 11:08:54 +00:00
bool source_is_nullable = from_type->isNullable();
bool result_is_nullable = to_type->isNullable();
2020-10-20 13:11:57 +00:00
auto wrapper = prepareImpl(removeNullable(from_type), removeNullable(to_type), result_is_nullable);
if (result_is_nullable)
{
return [wrapper, source_is_nullable]
2020-10-20 13:11:57 +00:00
(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable *, size_t input_rows_count) -> ColumnPtr
{
2020-10-14 14:04:50 +00:00
/// Create a temporary columns on which to perform the operation.
2020-10-17 14:23:37 +00:00
const auto & nullable_type = static_cast<const DataTypeNullable &>(*result_type);
const auto & nested_type = nullable_type.getNestedType();
2020-10-17 14:23:37 +00:00
ColumnsWithTypeAndName tmp_args;
if (source_is_nullable)
2020-10-17 14:23:37 +00:00
tmp_args = createBlockWithNestedColumns(arguments);
else
2020-10-17 14:23:37 +00:00
tmp_args = arguments;
2020-10-20 13:11:57 +00:00
const ColumnNullable * nullable_source = nullptr;
/// Add original ColumnNullable for createStringToEnumWrapper()
if (source_is_nullable)
{
if (arguments.size() != 1)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Invalid number of arguments");
2020-10-20 13:11:57 +00:00
nullable_source = typeid_cast<const ColumnNullable *>(arguments.front().column.get());
}
/// Perform the requested conversion.
2020-10-20 13:11:57 +00:00
auto tmp_res = wrapper(tmp_args, nested_type, nullable_source, input_rows_count);
2019-08-05 15:23:32 +00:00
/// May happen in fuzzy tests. For debug purpose.
2020-10-17 14:23:37 +00:00
if (!tmp_res)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Couldn't convert {} to {} in prepareRemoveNullable wrapper.",
arguments[0].type->getName(), nested_type->getName());
2019-08-05 15:23:32 +00:00
2020-10-17 14:23:37 +00:00
return wrapInNullable(tmp_res, arguments, nested_type, input_rows_count);
};
}
else if (source_is_nullable)
{
/// Conversion from Nullable to non-Nullable.
2020-10-17 14:23:37 +00:00
return [wrapper, skip_not_null_check]
2020-10-20 13:11:57 +00:00
(ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable *, size_t input_rows_count) -> ColumnPtr
{
2020-10-17 14:23:37 +00:00
auto tmp_args = createBlockWithNestedColumns(arguments);
2020-10-20 13:11:57 +00:00
auto nested_type = removeNullable(result_type);
/// Check that all values are not-NULL.
/// Check can be skipped in case if LowCardinality dictionary is transformed.
/// In that case, correctness will be checked beforehand.
if (!skip_not_null_check)
{
2020-10-17 14:23:37 +00:00
const auto & col = arguments[0].column;
const auto & nullable_col = assert_cast<const ColumnNullable &>(*col);
const auto & null_map = nullable_col.getNullMapData();
if (!memoryIsZero(null_map.data(), 0, null_map.size()))
throw Exception(ErrorCodes::CANNOT_INSERT_NULL_IN_ORDINARY_COLUMN, "Cannot convert NULL value to non-Nullable type");
}
2020-10-20 13:11:57 +00:00
const ColumnNullable * nullable_source = typeid_cast<const ColumnNullable *>(arguments.front().column.get());
return wrapper(tmp_args, nested_type, nullable_source, input_rows_count);
};
}
else
return wrapper;
}
2018-08-31 08:59:21 +00:00
/// 'from_type' and 'to_type' are nested types in case of Nullable.
/// 'requested_result_is_nullable' is true if CAST to Nullable type is requested.
2020-10-20 13:11:57 +00:00
WrapperType prepareImpl(const DataTypePtr & from_type, const DataTypePtr & to_type, bool requested_result_is_nullable) const
{
2022-03-23 18:59:26 +00:00
if (isUInt8(from_type) && isBool(to_type))
return createUInt8ToBoolWrapper(from_type, to_type);
2022-03-14 09:14:41 +00:00
/// We can cast IPv6 into IPv6, IPv4 into IPv4, but we should not allow to cast FixedString(16) into IPv6 as part of identity cast
2022-03-23 18:59:26 +00:00
bool safe_convert_custom_types = true;
2021-12-20 23:59:08 +00:00
if (const auto * to_type_custom_name = to_type->getCustomName())
2022-03-23 18:59:26 +00:00
safe_convert_custom_types = from_type->getCustomName() && from_type->getCustomName()->getName() == to_type_custom_name->getName();
else if (const auto * from_type_custom_name = from_type->getCustomName())
safe_convert_custom_types = to_type->getCustomName() && from_type_custom_name->getName() == to_type->getCustomName()->getName();
2021-12-20 23:59:08 +00:00
2022-03-23 18:59:26 +00:00
if (from_type->equals(*to_type) && safe_convert_custom_types)
{
/// We can only use identity conversion for DataTypeAggregateFunction when they are strictly equivalent.
if (typeid_cast<const DataTypeAggregateFunction *>(from_type.get()))
{
if (DataTypeAggregateFunction::strictEquals(from_type, to_type))
return createIdentityWrapper(from_type);
}
else
return createIdentityWrapper(from_type);
}
else if (WhichDataType(from_type).isNothing())
return createNothingWrapper(to_type.get());
2018-08-31 08:59:21 +00:00
WrapperType ret;
auto make_default_wrapper = [&](const auto & types) -> bool
{
using Types = std::decay_t<decltype(types)>;
using ToDataType = typename Types::LeftType;
if constexpr (
std::is_same_v<ToDataType, DataTypeUInt16> ||
std::is_same_v<ToDataType, DataTypeUInt32> ||
std::is_same_v<ToDataType, DataTypeUInt64> ||
2021-05-03 15:41:37 +00:00
std::is_same_v<ToDataType, DataTypeUInt128> ||
std::is_same_v<ToDataType, DataTypeUInt256> ||
2018-08-31 08:59:21 +00:00
std::is_same_v<ToDataType, DataTypeInt8> ||
std::is_same_v<ToDataType, DataTypeInt16> ||
std::is_same_v<ToDataType, DataTypeInt32> ||
std::is_same_v<ToDataType, DataTypeInt64> ||
std::is_same_v<ToDataType, DataTypeInt128> ||
std::is_same_v<ToDataType, DataTypeInt256> ||
2018-08-31 08:59:21 +00:00
std::is_same_v<ToDataType, DataTypeFloat32> ||
std::is_same_v<ToDataType, DataTypeFloat64> ||
std::is_same_v<ToDataType, DataTypeDate> ||
2021-07-15 11:40:45 +00:00
std::is_same_v<ToDataType, DataTypeDate32> ||
2020-11-05 19:09:17 +00:00
std::is_same_v<ToDataType, DataTypeDateTime> ||
std::is_same_v<ToDataType, DataTypeUUID> ||
std::is_same_v<ToDataType, DataTypeIPv4> ||
std::is_same_v<ToDataType, DataTypeIPv6>)
2018-08-31 08:59:21 +00:00
{
ret = createWrapper(from_type, checkAndGetDataType<ToDataType>(to_type.get()), requested_result_is_nullable);
return true;
}
2021-12-20 20:24:16 +00:00
if constexpr (std::is_same_v<ToDataType, DataTypeUInt8>)
{
2021-12-20 23:59:08 +00:00
if (isBool(to_type))
2021-12-20 20:24:16 +00:00
ret = createBoolWrapper<ToDataType>(from_type, checkAndGetDataType<ToDataType>(to_type.get()), requested_result_is_nullable);
else
ret = createWrapper(from_type, checkAndGetDataType<ToDataType>(to_type.get()), requested_result_is_nullable);
return true;
}
2018-08-31 08:59:21 +00:00
if constexpr (
std::is_same_v<ToDataType, DataTypeEnum8> ||
std::is_same_v<ToDataType, DataTypeEnum16>)
{
2020-10-20 13:11:57 +00:00
ret = createEnumWrapper(from_type, checkAndGetDataType<ToDataType>(to_type.get()));
2018-08-31 08:59:21 +00:00
return true;
}
if constexpr (
std::is_same_v<ToDataType, DataTypeDecimal<Decimal32>> ||
std::is_same_v<ToDataType, DataTypeDecimal<Decimal64>> ||
std::is_same_v<ToDataType, DataTypeDecimal<Decimal128>> ||
std::is_same_v<ToDataType, DataTypeDecimal<Decimal256>> ||
std::is_same_v<ToDataType, DataTypeDateTime64>)
2018-08-31 08:59:21 +00:00
{
ret = createDecimalWrapper(from_type, checkAndGetDataType<ToDataType>(to_type.get()), requested_result_is_nullable);
2018-08-31 08:59:21 +00:00
return true;
}
return false;
};
bool cast_ipv4_ipv6_default_on_conversion_error_value = context && context->getSettingsRef().cast_ipv4_ipv6_default_on_conversion_error;
bool input_format_ipv4_default_on_conversion_error_value = context && context->getSettingsRef().input_format_ipv4_default_on_conversion_error;
bool input_format_ipv6_default_on_conversion_error_value = context && context->getSettingsRef().input_format_ipv6_default_on_conversion_error;
auto make_custom_serialization_wrapper = [&, cast_ipv4_ipv6_default_on_conversion_error_value, input_format_ipv4_default_on_conversion_error_value, input_format_ipv6_default_on_conversion_error_value](const auto & types) -> bool
{
using Types = std::decay_t<decltype(types)>;
using ToDataType = typename Types::RightType;
using FromDataType = typename Types::LeftType;
if constexpr (WhichDataType(FromDataType::type_id).isStringOrFixedString())
{
if constexpr (std::is_same_v<ToDataType, DataTypeIPv4>)
{
ret = [cast_ipv4_ipv6_default_on_conversion_error_value,
input_format_ipv4_default_on_conversion_error_value,
requested_result_is_nullable](
ColumnsWithTypeAndName & arguments,
const DataTypePtr & result_type,
const ColumnNullable * column_nullable,
size_t) -> ColumnPtr
{
if (!WhichDataType(result_type).isIPv4())
throw Exception(ErrorCodes::TYPE_MISMATCH, "Wrong result type {}. Expected IPv4", result_type->getName());
const auto * null_map = column_nullable ? &column_nullable->getNullMapData() : nullptr;
if (requested_result_is_nullable)
return convertToIPv4<IPStringToNumExceptionMode::Null>(arguments[0].column, null_map);
else if (cast_ipv4_ipv6_default_on_conversion_error_value || input_format_ipv4_default_on_conversion_error_value)
return convertToIPv4<IPStringToNumExceptionMode::Default>(arguments[0].column, null_map);
else
return convertToIPv4<IPStringToNumExceptionMode::Throw>(arguments[0].column, null_map);
};
return true;
}
if constexpr (std::is_same_v<ToDataType, DataTypeIPv6>)
{
ret = [cast_ipv4_ipv6_default_on_conversion_error_value,
input_format_ipv6_default_on_conversion_error_value,
requested_result_is_nullable](
ColumnsWithTypeAndName & arguments,
const DataTypePtr & result_type,
const ColumnNullable * column_nullable,
size_t) -> ColumnPtr
{
if (!WhichDataType(result_type).isIPv6())
throw Exception(
ErrorCodes::TYPE_MISMATCH, "Wrong result type {}. Expected IPv6", result_type->getName());
const auto * null_map = column_nullable ? &column_nullable->getNullMapData() : nullptr;
if (requested_result_is_nullable)
return convertToIPv6<IPStringToNumExceptionMode::Null>(arguments[0].column, null_map);
else if (cast_ipv4_ipv6_default_on_conversion_error_value || input_format_ipv6_default_on_conversion_error_value)
return convertToIPv6<IPStringToNumExceptionMode::Default>(arguments[0].column, null_map);
else
return convertToIPv6<IPStringToNumExceptionMode::Throw>(arguments[0].column, null_map);
};
return true;
}
if (to_type->getCustomSerialization() && to_type->getCustomName())
{
ret = [requested_result_is_nullable](
ColumnsWithTypeAndName & arguments,
const DataTypePtr & result_type,
const ColumnNullable * column_nullable,
size_t input_rows_count) -> ColumnPtr
{
auto wrapped_result_type = result_type;
if (requested_result_is_nullable)
wrapped_result_type = makeNullable(result_type);
return ConvertImplGenericFromString<typename FromDataType::ColumnType>::execute(
arguments, wrapped_result_type, column_nullable, input_rows_count);
};
return true;
}
}
2023-05-12 15:54:50 +00:00
else if constexpr (WhichDataType(FromDataType::type_id).isIPv6() && WhichDataType(ToDataType::type_id).isIPv4())
{
ret = [cast_ipv4_ipv6_default_on_conversion_error_value, requested_result_is_nullable](
ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable * column_nullable, size_t)
-> ColumnPtr
{
if (!WhichDataType(result_type).isIPv4())
throw Exception(
ErrorCodes::TYPE_MISMATCH, "Wrong result type {}. Expected IPv4", result_type->getName());
const auto * null_map = column_nullable ? &column_nullable->getNullMapData() : nullptr;
if (requested_result_is_nullable)
return convertIPv6ToIPv4<IPStringToNumExceptionMode::Null>(arguments[0].column, null_map);
else if (cast_ipv4_ipv6_default_on_conversion_error_value)
2023-05-12 15:54:50 +00:00
return convertIPv6ToIPv4<IPStringToNumExceptionMode::Default>(arguments[0].column, null_map);
else
return convertIPv6ToIPv4<IPStringToNumExceptionMode::Throw>(arguments[0].column, null_map);
};
return true;
}
if constexpr (WhichDataType(ToDataType::type_id).isStringOrFixedString())
{
if constexpr (WhichDataType(FromDataType::type_id).isEnum())
{
ret = createEnumToStringWrapper<FromDataType>();
return true;
}
else if (from_type->getCustomSerialization())
{
ret = [](ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, const ColumnNullable *, size_t input_rows_count) -> ColumnPtr
{
return ConvertImplGenericToString<typename ToDataType::ColumnType>::execute(arguments, result_type, input_rows_count);
};
return true;
}
}
return false;
};
if (callOnTwoTypeIndexes(from_type->getTypeId(), to_type->getTypeId(), make_custom_serialization_wrapper))
return ret;
2018-08-31 08:59:21 +00:00
if (callOnIndexAndDataType<void>(to_type->getTypeId(), make_default_wrapper))
return ret;
switch (to_type->getTypeId())
{
case TypeIndex::String:
return createStringWrapper(from_type);
case TypeIndex::FixedString:
return createFixedStringWrapper(from_type, checkAndGetDataType<DataTypeFixedString>(to_type.get())->getN());
case TypeIndex::Array:
2021-04-21 21:19:01 +00:00
return createArrayWrapper(from_type, static_cast<const DataTypeArray &>(*to_type));
2018-08-31 08:59:21 +00:00
case TypeIndex::Tuple:
return createTupleWrapper(from_type, checkAndGetDataType<DataTypeTuple>(to_type.get()));
2020-10-10 06:49:03 +00:00
case TypeIndex::Map:
return createMapWrapper(from_type, checkAndGetDataType<DataTypeMap>(to_type.get()));
2021-08-10 01:33:57 +00:00
case TypeIndex::Object:
return createObjectWrapper(from_type, checkAndGetDataType<DataTypeObject>(to_type.get()));
case TypeIndex::AggregateFunction:
return createAggregateFunctionWrapper(from_type, checkAndGetDataType<DataTypeAggregateFunction>(to_type.get()));
case TypeIndex::Interval:
return createIntervalWrapper(from_type, checkAndGetDataType<DataTypeInterval>(to_type.get())->getKind());
2018-08-31 08:59:21 +00:00
default:
break;
}
if (cast_type == CastType::accurateOrNull)
2020-11-05 19:09:17 +00:00
return createToNullableColumnWrapper();
else
throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Conversion from {} to {} is not supported",
from_type->getName(), to_type->getName());
}
2018-02-02 08:33:36 +00:00
};
2020-11-05 19:09:17 +00:00
class MonotonicityHelper
{
public:
2021-08-07 08:11:40 +00:00
using MonotonicityForRange = FunctionCastBase::MonotonicityForRange;
2020-11-05 19:09:17 +00:00
2020-12-17 18:32:25 +00:00
template <typename DataType>
2020-11-05 19:09:17 +00:00
static auto monotonicityForType(const DataType * const)
{
return FunctionTo<DataType>::Type::Monotonic::get;
}
static MonotonicityForRange getMonotonicityInformation(const DataTypePtr & from_type, const IDataType * to_type)
{
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeUInt8>(to_type))
return monotonicityForType(type);
if (const auto * type = checkAndGetDataType<DataTypeUInt16>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeUInt32>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeUInt64>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeUInt128>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeUInt256>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeInt8>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeInt16>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeInt32>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeInt64>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeInt128>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeInt256>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeFloat32>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeFloat64>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeDate>(to_type))
2021-07-15 11:40:45 +00:00
return monotonicityForType(type);
if (const auto * type = checkAndGetDataType<DataTypeDate32>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeDateTime>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeString>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
if (isEnum(from_type))
{
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeEnum8>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
2021-05-03 15:41:37 +00:00
if (const auto * type = checkAndGetDataType<DataTypeEnum16>(to_type))
2020-11-05 19:09:17 +00:00
return monotonicityForType(type);
}
/// other types like Null, FixedString, Array and Tuple have no monotonicity defined
return {};
}
2018-02-02 08:33:36 +00:00
};
2011-10-15 23:40:56 +00:00
}