ClickHouse/docs/en/sql-reference/dictionaries/external-dictionaries/external-dicts-dict-layout.md

549 lines
18 KiB
Markdown
Raw Normal View History

2020-04-03 13:23:32 +00:00
---
toc_priority: 41
toc_title: Storing Dictionaries in Memory
---
# Storing Dictionaries in Memory {#dicts-external-dicts-dict-layout}
WIP on docs (#3813) * CLICKHOUSE-4063: less manual html @ index.md * CLICKHOUSE-4063: recommend markdown="1" in README.md * CLICKHOUSE-4003: manually purge custom.css for now * CLICKHOUSE-4064: expand <details> before any print (including to pdf) * CLICKHOUSE-3927: rearrange interfaces/formats.md a bit * CLICKHOUSE-3306: add few http headers * Remove copy-paste introduced in #3392 * Hopefully better chinese fonts #3392 * get rid of tabs @ custom.css * Apply comments and patch from #3384 * Add jdbc.md to ToC and some translation, though it still looks badly incomplete * minor punctuation * Add some backlinks to official website from mirrors that just blindly take markdown sources * Do not make fonts extra light * find . -name '*.md' -type f | xargs -I{} perl -pi -e 's//g' {} * find . -name '*.md' -type f | xargs -I{} perl -pi -e 's/ sql/g' {} * Remove outdated stuff from roadmap.md * Not so light font on front page too * Refactor Chinese formats.md to match recent changes in other languages * Update some links on front page * Remove some outdated comment * Add twitter link to front page * More front page links tuning * Add Amsterdam meetup link * Smaller font to avoid second line * Add Amsterdam link to README.md * Proper docs nav translation * Back to 300 font-weight except Chinese * fix docs build * Update Amsterdam link * remove symlinks * more zh punctuation * apply lost comment by @zhang2014 * Apply comments by @zhang2014 from #3417 * Remove Beijing link * rm incorrect symlink * restore content of docs/zh/operations/table_engines/index.md * CLICKHOUSE-3751: stem terms while searching docs * CLICKHOUSE-3751: use English stemmer in non-English docs too * CLICKHOUSE-4135 fix * Remove past meetup link * Add blog link to top nav * Add ContentSquare article link * Add form link to front page + refactor some texts * couple markup fixes * minor * Introduce basic ODBC driver page in docs * More verbose 3rd party libs disclaimer * Put third-party stuff into a separate folder * Separate third-party stuff in ToC too * Update links * Move stuff that is not really (only) a client library into a separate page * Add clickhouse-hdfs-loader link * Some introduction for "interfaces" section * Rewrite tcp.md * http_interface.md -> http.md * fix link * Remove unconvenient error for now * try to guess anchor instead of failing * remove symlink * Remove outdated info from introduction * remove ru roadmap.md * replace ru roadmap.md with symlink * Update roadmap.md * lost file * Title case in toc_en.yml * Sync "Functions" ToC section with en * Remove reference to pretty old ClickHouse release from docs * couple lost symlinks in fa * Close quote in proper place * Rewrite en/getting_started/index.md * Sync en<>ru getting_started/index.md * minor changes * Some gui.md refactoring * Translate DataGrip section to ru * Translate DataGrip section to zh * Translate DataGrip section to fa * Translate DBeaver section to fa * Translate DBeaver section to zh * Split third-party GUI to open-source and commercial * Mention some RDBMS integrations + ad-hoc translation fixes * Add rel="external nofollow" to outgoing links from docs * Lost blank lines * Fix class name * More rel="external nofollow" * Apply suggestions by @sundy-li * Mobile version of front page improvements * test * test 2 * test 3 * Update LICENSE * minor docs fix * Highlight current article as suggested by @sundy-li * fix link destination * Introduce backup.md (only "en" for now) * Mention INSERT+SELECT in backup.md * Some improvements for replication.md * Add backup.md to toc * Mention clickhouse-backup tool * Mention LightHouse in third-party GUI list * Introduce interfaces/third-party/proxy.md * Add clickhouse-bulk to proxy.md * Major extension of integrations.md contents * fix link target * remove unneeded file * better toc item name * fix markdown * better ru punctuation * Add yet another possible backup approach * Simplify copying permalinks to headers * Support non-eng link anchors in docs + update some deps * Generate anchors for single-page mode automatically * Remove anchors to top of pages * Remove anchors that nobody links to * build fixes * fix few links * restore css * fix some links * restore gifs * fix lost words * more docs fixes * docs fixes * NULL anchor * update urllib3 dependency * more fixes
2018-12-12 17:28:00 +00:00
There are a variety of ways to store dictionaries in memory.
2021-04-21 16:25:04 +00:00
We recommend [flat](#flat), [hashed](#dicts-external_dicts_dict_layout-hashed) and [complex_key_hashed](#complex-key-hashed), which provide optimal processing speed.
2021-04-21 16:25:04 +00:00
Caching is not recommended because of potentially poor performance and difficulties in selecting optimal parameters. Read more in the section [cache](#cache).
There are several ways to improve dictionary performance:
- Call the function for working with the dictionary after `GROUP BY`.
- Mark attributes to extract as injective. An attribute is called injective if different attribute values correspond to different keys. So when `GROUP BY` uses a function that fetches an attribute value by the key, this function is automatically taken out of `GROUP BY`.
ClickHouse generates an exception for errors with dictionaries. Examples of errors:
- The dictionary being accessed could not be loaded.
- Error querying a `cached` dictionary.
You can view the list of external dictionaries and their statuses in the `system.dictionaries` table.
The configuration looks like this:
2020-03-20 10:10:48 +00:00
``` xml
<yandex>
<dictionary>
...
<layout>
2018-03-10 23:36:26 +00:00
<layout_type>
<!-- layout settings -->
</layout_type>
</layout>
...
</dictionary>
</yandex>
```
Corresponding [DDL-query](../../../sql-reference/statements/create/dictionary.md):
2020-03-20 10:10:48 +00:00
``` sql
CREATE DICTIONARY (...)
...
LAYOUT(LAYOUT_TYPE(param value)) -- layout settings
...
```
## Ways to Store Dictionaries in Memory {#ways-to-store-dictionaries-in-memory}
- [flat](#flat)
- [hashed](#dicts-external_dicts_dict_layout-hashed)
2020-10-13 17:23:29 +00:00
- [sparse_hashed](#dicts-external_dicts_dict_layout-sparse_hashed)
- [cache](#cache)
2020-10-13 17:23:29 +00:00
- [ssd_cache](#ssd-cache)
- [direct](#direct)
2020-10-13 17:23:29 +00:00
- [range_hashed](#range-hashed)
- [complex_key_hashed](#complex-key-hashed)
- [complex_key_range_hashed](#complex-key-range-hashed)
2020-10-13 17:23:29 +00:00
- [complex_key_cache](#complex-key-cache)
2020-11-04 00:47:42 +00:00
- [ssd_cache](#ssd-cache)
- [ssd_complex_key_cache](#complex-key-ssd-cache)
2020-10-13 17:23:29 +00:00
- [complex_key_direct](#complex-key-direct)
- [ip_trie](#ip-trie)
2020-03-20 10:10:48 +00:00
### flat {#flat}
The dictionary is completely stored in memory in the form of flat arrays. How much memory does the dictionary use? The amount is proportional to the size of the largest key (in space used).
2021-04-23 08:40:05 +00:00
The dictionary key has the [UInt64](../../../sql-reference/data-types/int-uint.md) type and the value is limited to `max_array_size` (by default — 500,000). If a larger key is discovered when creating the dictionary, ClickHouse throws an exception and does not create the dictionary. Dictionary flat arrays initial size is controlled by `initial_array_size` setting (by default — 1024).
2021-04-21 16:25:04 +00:00
All types of sources are supported. When updating, data (from a file or from a table) is read in it entirety.
This method provides the best performance among all available methods of storing the dictionary.
Configuration example:
2020-03-20 10:10:48 +00:00
``` xml
<layout>
2021-04-21 16:25:04 +00:00
<flat>
<initial_array_size>50000</initial_array_size>
<max_array_size>5000000</max_array_size>
</flat>
</layout>
```
or
2020-03-20 10:10:48 +00:00
``` sql
2021-04-21 16:25:04 +00:00
LAYOUT(FLAT(INITIAL_ARRAY_SIZE 50000 MAX_ARRAY_SIZE 5000000))
```
### hashed {#dicts-external_dicts_dict_layout-hashed}
2018-09-06 18:07:25 +00:00
The dictionary is completely stored in memory in the form of a hash table. The dictionary can contain any number of elements with any identifiers In practice, the number of keys can reach tens of millions of items.
2021-05-13 17:05:58 +00:00
If `preallocate` is `true` (default is `false`) the hash table will be preallocated (this will make the dictionary load faster). But note that you should use it only if:
2021-05-13 17:26:03 +00:00
- The source support an approximate number of elements (for now it is supported only by the `ClickHouse` source).
- There are no duplicates in the data (otherwise it may increase memory usage for the hashtable).
All types of sources are supported. When updating, data (from a file or from a table) is read in its entirety.
Configuration example:
2020-03-20 10:10:48 +00:00
``` xml
<layout>
<hashed>
<preallocate>0</preallocate>
</hashed>
</layout>
```
or
2020-03-20 10:10:48 +00:00
``` sql
LAYOUT(HASHED(PREALLOCATE 0))
```
2020-10-13 17:23:29 +00:00
### sparse_hashed {#dicts-external_dicts_dict_layout-sparse_hashed}
Similar to `hashed`, but uses less memory in favor more CPU usage.
It will be also preallocated so as `hashed` (with `preallocate` set to `true`), and note that it is even more significant for `sparse_hashed`.
Configuration example:
2020-03-20 10:10:48 +00:00
``` xml
<layout>
<sparse_hashed />
</layout>
```
or
2020-03-20 10:10:48 +00:00
``` sql
LAYOUT(SPARSE_HASHED([PREALLOCATE 0]))
```
2020-10-13 17:23:29 +00:00
### complex_key_hashed {#complex-key-hashed}
This type of storage is for use with composite [keys](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md). Similar to `hashed`.
Configuration example:
2020-03-20 10:10:48 +00:00
``` xml
<layout>
<complex_key_hashed />
</layout>
```
2020-03-20 10:10:48 +00:00
``` sql
LAYOUT(COMPLEX_KEY_HASHED())
```
2021-10-16 10:41:56 +00:00
### complex_key_sparse_hashed {#complex-key-sparse-hashed}
This type of storage is for use with composite [keys](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md). Similar to `sparse_hashed`.
Configuration example:
``` xml
<layout>
<complex_key_sparse_hashed />
</layout>
```
``` sql
LAYOUT(COMPLEX_KEY_SPARSE_HASHED())
```
### hashed_array {#dicts-external_dicts_dict_layout-hashed-array}
The dictionary is completely stored in memory. Each attribute is stored in array. Key attribute is stored in the form of hashed table where value is index in attributes array. The dictionary can contain any number of elements with any identifiers In practice, the number of keys can reach tens of millions of items.
All types of sources are supported. When updating, data (from a file or from a table) is read in its entirety.
Configuration example:
``` xml
<layout>
<hashed_array>
</hashed_array>
</layout>
```
or
``` sql
LAYOUT(HASHED_ARRAY())
```
### complex_key_hashed_array {#complex-key-hashed-array}
This type of storage is for use with composite [keys](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md). Similar to `hashed_array`.
Configuration example:
``` xml
<layout>
<complex_key_hashed_array />
</layout>
```
``` sql
LAYOUT(COMPLEX_KEY_HASHED_ARRAY())
```
2020-10-13 17:23:29 +00:00
### range_hashed {#range-hashed}
The dictionary is stored in memory in the form of a hash table with an ordered array of ranges and their corresponding values.
This storage method works the same way as hashed and allows using date/time (arbitrary numeric type) ranges in addition to the key.
Example: The table contains discounts for each advertiser in the format:
2020-03-20 10:10:48 +00:00
``` text
2020-04-03 13:23:32 +00:00
+---------|-------------|-------------|------+
2018-04-23 06:20:21 +00:00
| advertiser id | discount start date | discount end date | amount |
+===============+=====================+===================+========+
| 123 | 2015-01-01 | 2015-01-15 | 0.15 |
2020-04-03 13:23:32 +00:00
+---------|-------------|-------------|------+
2018-04-23 06:20:21 +00:00
| 123 | 2015-01-16 | 2015-01-31 | 0.25 |
2020-04-03 13:23:32 +00:00
+---------|-------------|-------------|------+
2018-04-23 06:20:21 +00:00
| 456 | 2015-01-01 | 2015-01-15 | 0.05 |
2020-04-03 13:23:32 +00:00
+---------|-------------|-------------|------+
```
To use a sample for date ranges, define the `range_min` and `range_max` elements in the [structure](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md). These elements must contain elements `name` and `type` (if `type` is not specified, the default type will be used - Date). `type` can be any numeric type (Date / DateTime / UInt64 / Int32 / others).
!!! warning "Warning"
Values of `range_min` and `range_max` should fit in `Int64` type.
Example:
2020-03-20 10:10:48 +00:00
``` xml
<structure>
<id>
<name>Id</name>
</id>
<range_min>
<name>first</name>
<type>Date</type>
</range_min>
<range_max>
<name>last</name>
<type>Date</type>
</range_max>
...
```
or
2020-03-20 10:10:48 +00:00
``` sql
CREATE DICTIONARY somedict (
id UInt64,
first Date,
last Date
)
PRIMARY KEY id
LAYOUT(RANGE_HASHED())
RANGE(MIN first MAX last)
```
To work with these dictionaries, you need to pass an additional argument to the `dictGetT` function, for which a range is selected:
2020-03-20 10:10:48 +00:00
``` sql
2018-09-06 18:07:25 +00:00
dictGetT('dict_name', 'attr_name', id, date)
```
This function returns the value for the specified `id`s and the date range that includes the passed date.
Details of the algorithm:
- If the `id` is not found or a range is not found for the `id`, it returns the default value for the dictionary.
- If there are overlapping ranges, it returns value for any (random) range.
- If the range delimiter is `NULL` or an invalid date (such as 1900-01-01), the range is open. The range can be open on both sides.
Configuration example:
2020-03-20 10:10:48 +00:00
``` xml
<yandex>
<dictionary>
...
<layout>
<range_hashed />
</layout>
<structure>
<id>
<name>Abcdef</name>
</id>
<range_min>
<name>StartTimeStamp</name>
<type>UInt64</type>
</range_min>
<range_max>
<name>EndTimeStamp</name>
<type>UInt64</type>
</range_max>
<attribute>
<name>XXXType</name>
<type>String</type>
<null_value />
</attribute>
</structure>
</dictionary>
</yandex>
```
or
2020-03-20 10:10:48 +00:00
``` sql
CREATE DICTIONARY somedict(
Abcdef UInt64,
StartTimeStamp UInt64,
EndTimeStamp UInt64,
XXXType String DEFAULT ''
)
PRIMARY KEY Abcdef
RANGE(MIN StartTimeStamp MAX EndTimeStamp)
```
### complex_key_range_hashed {#complex-key-range-hashed}
The dictionary is stored in memory in the form of a hash table with an ordered array of ranges and their corresponding values (see [range_hashed](#range-hashed)). This type of storage is for use with composite [keys](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md).
Configuration example:
``` sql
CREATE DICTIONARY range_dictionary
(
CountryID UInt64,
CountryKey String,
StartDate Date,
EndDate Date,
Tax Float64 DEFAULT 0.2
)
PRIMARY KEY CountryID, CountryKey
SOURCE(CLICKHOUSE(TABLE 'date_table'))
LIFETIME(MIN 1 MAX 1000)
LAYOUT(COMPLEX_KEY_RANGE_HASHED())
RANGE(MIN StartDate MAX EndDate);
```
2020-03-20 10:10:48 +00:00
### cache {#cache}
The dictionary is stored in a cache that has a fixed number of cells. These cells contain frequently used elements.
2020-03-20 10:10:48 +00:00
When searching for a dictionary, the cache is searched first. For each block of data, all keys that are not found in the cache or are outdated are requested from the source using `SELECT attrs... FROM db.table WHERE id IN (k1, k2, ...)`. The received data is then written to the cache.
If keys are not found in dictionary, then update cache task is created and added into update queue. Update queue properties can be controlled with settings `max_update_queue_size`, `update_queue_push_timeout_milliseconds`, `query_wait_timeout_milliseconds`, `max_threads_for_updates`.
For cache dictionaries, the expiration [lifetime](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-lifetime.md) of data in the cache can be set. If more time than `lifetime` has passed since loading the data in a cell, the cells value is not used and key becomes expired, and it is re-requested the next time it needs to be used this behaviour can be configured with setting `allow_read_expired_keys`.
This is the least effective of all the ways to store dictionaries. The speed of the cache depends strongly on correct settings and the usage scenario. A cache type dictionary performs well only when the hit rates are high enough (recommended 99% and higher). You can view the average hit rate in the `system.dictionaries` table.
2021-08-02 21:53:43 +00:00
If setting `allow_read_expired_keys` is set to 1, by default 0. Then dictionary can support asynchronous updates. If a client requests keys and all of them are in cache, but some of them are expired, then dictionary will return expired keys for a client and request them asynchronously from the source.
2020-03-20 10:10:48 +00:00
To improve cache performance, use a subquery with `LIMIT`, and call the function with the dictionary externally.
2021-08-02 21:53:43 +00:00
Supported [sources](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-sources.md): MySQL, ClickHouse, executable, HTTP.
Example of settings:
2020-03-20 10:10:48 +00:00
``` xml
<layout>
<cache>
<!-- The size of the cache, in number of cells. Rounded up to a power of two. -->
2018-04-23 06:20:21 +00:00
<size_in_cells>1000000000</size_in_cells>
<!-- Allows to read expired keys. -->
<allow_read_expired_keys>0</allow_read_expired_keys>
<!-- Max size of update queue. -->
<max_update_queue_size>100000</max_update_queue_size>
<!-- Max timeout in milliseconds for push update task into queue. -->
<update_queue_push_timeout_milliseconds>10</update_queue_push_timeout_milliseconds>
<!-- Max wait timeout in milliseconds for update task to complete. -->
<query_wait_timeout_milliseconds>60000</query_wait_timeout_milliseconds>
<!-- Max threads for cache dictionary update. -->
<max_threads_for_updates>4</max_threads_for_updates>
</cache>
</layout>
```
or
2020-03-20 10:10:48 +00:00
``` sql
LAYOUT(CACHE(SIZE_IN_CELLS 1000000000))
```
Set a large enough cache size. You need to experiment to select the number of cells:
2020-03-20 10:10:48 +00:00
1. Set some value.
2. Run queries until the cache is completely full.
3. Assess memory consumption using the `system.dictionaries` table.
4. Increase or decrease the number of cells until the required memory consumption is reached.
2020-03-20 10:10:48 +00:00
!!! warning "Warning"
2018-09-06 18:07:25 +00:00
Do not use ClickHouse as a source, because it is slow to process queries with random reads.
2020-10-13 17:23:29 +00:00
### complex_key_cache {#complex-key-cache}
This type of storage is for use with composite [keys](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md). Similar to `cache`.
2018-03-25 03:08:08 +00:00
2020-10-13 17:23:29 +00:00
### ssd_cache {#ssd-cache}
2020-05-23 10:41:27 +00:00
Similar to `cache`, but stores data on SSD and index in RAM. All cache dictionary settings related to update queue can also be applied to SSD cache dictionaries.
2020-05-23 10:41:27 +00:00
``` xml
<layout>
<ssd_cache>
<!-- Size of elementary read block in bytes. Recommended to be equal to SSD's page size. -->
<block_size>4096</block_size>
<!-- Max cache file size in bytes. -->
<file_size>16777216</file_size>
<!-- Size of RAM buffer in bytes for reading elements from SSD. -->
<read_buffer_size>131072</read_buffer_size>
<!-- Size of RAM buffer in bytes for aggregating elements before flushing to SSD. -->
<write_buffer_size>1048576</write_buffer_size>
<!-- Path where cache file will be stored. -->
<path>/var/lib/clickhouse/clickhouse_dictionaries/test_dict</path>
</ssd_cache>
</layout>
```
or
``` sql
LAYOUT(SSD_CACHE(BLOCK_SIZE 4096 FILE_SIZE 16777216 READ_BUFFER_SIZE 1048576
2021-05-24 21:33:56 +00:00
PATH ./user_files/test_dict))
2020-05-23 10:41:27 +00:00
```
2020-10-13 17:23:29 +00:00
### complex_key_ssd_cache {#complex-key-ssd-cache}
2020-05-23 10:41:27 +00:00
2020-10-13 17:23:29 +00:00
This type of storage is for use with composite [keys](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md). Similar to `ssd_cache`.
2020-05-23 10:41:27 +00:00
### direct {#direct}
The dictionary is not stored in memory and directly goes to the source during the processing of a request.
The dictionary key has the `UInt64` type.
All types of [sources](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-sources.md), except local files, are supported.
Configuration example:
``` xml
<layout>
<direct />
</layout>
```
or
``` sql
LAYOUT(DIRECT())
```
2020-10-13 17:23:29 +00:00
### complex_key_direct {#complex-key-direct}
2020-05-13 16:05:05 +00:00
This type of storage is for use with composite [keys](../../../sql-reference/dictionaries/external-dictionaries/external-dicts-dict-structure.md). Similar to `direct`.
2020-05-13 16:05:05 +00:00
2020-10-13 17:23:29 +00:00
### ip_trie {#ip-trie}
2018-03-25 03:08:08 +00:00
2018-04-23 06:20:21 +00:00
This type of storage is for mapping network prefixes (IP addresses) to metadata such as ASN.
2018-03-25 03:08:08 +00:00
2018-04-23 06:20:21 +00:00
Example: The table contains network prefixes and their corresponding AS number and country code:
2018-03-25 03:08:08 +00:00
2020-03-20 10:10:48 +00:00
``` text
2020-04-03 13:23:32 +00:00
+-----------|-----|------+
2018-03-25 03:08:08 +00:00
| prefix | asn | cca2 |
+=================+=======+========+
| 202.79.32.0/20 | 17501 | NP |
2020-04-03 13:23:32 +00:00
+-----------|-----|------+
2018-03-25 03:08:08 +00:00
| 2620:0:870::/48 | 3856 | US |
2020-04-03 13:23:32 +00:00
+-----------|-----|------+
2018-03-25 03:08:08 +00:00
| 2a02:6b8:1::/48 | 13238 | RU |
2020-04-03 13:23:32 +00:00
+-----------|-----|------+
2018-03-25 03:08:08 +00:00
| 2001:db8::/32 | 65536 | ZZ |
2020-04-03 13:23:32 +00:00
+-----------|-----|------+
2018-03-25 03:08:08 +00:00
```
2018-04-23 06:20:21 +00:00
When using this type of layout, the structure must have a composite key.
2018-03-25 03:08:08 +00:00
Example:
2020-03-20 10:10:48 +00:00
``` xml
2018-03-25 03:08:08 +00:00
<structure>
<key>
<attribute>
<name>prefix</name>
<type>String</type>
</attribute>
</key>
<attribute>
<name>asn</name>
<type>UInt32</type>
<null_value />
</attribute>
<attribute>
<name>cca2</name>
<type>String</type>
<null_value>??</null_value>
</attribute>
...
</structure>
<layout>
<ip_trie>
<!-- Key attribute `prefix` can be retrieved via dictGetString. -->
<!-- This option increases memory usage. -->
<access_to_key_from_attributes>true</access_to_key_from_attributes>
</ip_trie>
</layout>
2018-03-25 03:08:08 +00:00
```
or
2020-03-20 10:10:48 +00:00
``` sql
CREATE DICTIONARY somedict (
prefix String,
asn UInt32,
cca2 String DEFAULT '??'
)
PRIMARY KEY prefix
```
2018-09-06 18:07:25 +00:00
The key must have only one String type attribute that contains an allowed IP prefix. Other types are not supported yet.
2018-03-25 03:08:08 +00:00
2018-04-23 06:20:21 +00:00
For queries, you must use the same functions (`dictGetT` with a tuple) as for dictionaries with composite keys:
2018-03-25 03:08:08 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2018-04-23 06:20:21 +00:00
dictGetT('dict_name', 'attr_name', tuple(ip))
```
2018-03-25 03:08:08 +00:00
2018-09-06 18:07:25 +00:00
The function takes either `UInt32` for IPv4, or `FixedString(16)` for IPv6:
2018-03-25 03:08:08 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2018-04-23 06:20:21 +00:00
dictGetString('prefix', 'asn', tuple(IPv6StringToNum('2001:db8::1')))
```
2018-03-25 03:08:08 +00:00
2018-04-23 06:20:21 +00:00
Other types are not supported yet. The function returns the attribute for the prefix that corresponds to this IP address. If there are overlapping prefixes, the most specific one is returned.
2018-03-25 03:08:08 +00:00
Data must completely fit into RAM.