ClickHouse/dbms/include/DB/AggregateFunctions/AggregateFunctionQuantileTiming.h

1034 lines
29 KiB
C++
Raw Normal View History

#pragma once
#include <limits>
#include <DB/Common/MemoryTracker.h>
#include <DB/Common/HashTable/Hash.h>
#include <DB/IO/WriteHelpers.h>
#include <DB/IO/ReadHelpers.h>
#include <DB/DataTypes/DataTypesNumberFixed.h>
#include <DB/DataTypes/DataTypeArray.h>
#include <DB/AggregateFunctions/IUnaryAggregateFunction.h>
#include <DB/AggregateFunctions/IBinaryAggregateFunction.h>
#include <DB/AggregateFunctions/QuantilesCommon.h>
#include <DB/Columns/ColumnArray.h>
2015-10-05 00:33:43 +00:00
#include <ext/range.hpp>
namespace DB
{
/** Вычисляет квантиль для времени в миллисекундах, меньшего 30 сек.
* Если значение больше 30 сек, то значение приравнивается к 30 сек.
*
* Если всего значений не больше примерно 5670, то вычисление точное.
*
* Иначе:
* Если время меньше 1024 мс., то вычисление точное.
* Иначе вычисление идёт с округлением до числа, кратного 16 мс.
*
* Используется три разные структуры данных:
* - плоский массив (всех встреченных значений) фиксированной длины, выделяемый inplace, размер 64 байта; хранит 0..31 значений;
* - плоский массив (всех встреченных значений), выделяемый отдельно, увеличивающейся длины;
* - гистограмма (то есть, отображение значение -> количество), состоящая из двух частей:
* -- для значений от 0 до 1023 - с шагом 1;
* -- для значений от 1024 до 30000 - с шагом 16;
*/
#define TINY_MAX_ELEMS 31
#define BIG_THRESHOLD 30000
namespace detail
{
/** Вспомогательная структура для оптимизации в случае маленького количества значений
* - плоский массив фиксированного размера "на стеке", в который кладутся все встреченные значения подряд.
* Размер - 64 байта. Должна быть POD-типом (используется в union).
*/
struct QuantileTimingTiny
{
mutable UInt16 elems[TINY_MAX_ELEMS]; /// mutable потому что сортировка массива не считается изменением состояния.
/// Важно, чтобы count был в конце структуры, так как начало структуры будет впоследствии перезатёрто другими объектами.
/// Вы должны сами инициализировать его нулём.
/// Почему? Поле count переиспользуется и в тех случаях, когда в union-е лежат другие структуры
/// (размер которых не дотягивает до этого поля.)
UInt16 count;
/// Можно использовать только пока count < TINY_MAX_ELEMS.
void insert(UInt64 x)
{
if (unlikely(x > BIG_THRESHOLD))
x = BIG_THRESHOLD;
elems[count] = x;
++count;
}
/// Можно использовать только пока count + rhs.count <= TINY_MAX_ELEMS.
void merge(const QuantileTimingTiny & rhs)
{
for (size_t i = 0; i < rhs.count; ++i)
{
elems[count] = rhs.elems[i];
++count;
}
}
void serialize(WriteBuffer & buf) const
{
writeBinary(count, buf);
buf.write(reinterpret_cast<const char *>(elems), count * sizeof(elems[0]));
}
void deserialize(ReadBuffer & buf)
{
readBinary(count, buf);
buf.readStrict(reinterpret_cast<char *>(elems), count * sizeof(elems[0]));
}
/** Эту функцию обязательно нужно позвать перед get-функциями. */
void prepare() const
{
std::sort(elems, elems + count);
}
UInt16 get(double level) const
{
return level != 1
? elems[static_cast<size_t>(count * level)]
: elems[count - 1];
}
template <typename ResultType>
void getMany(const double * levels, size_t size, ResultType * result) const
{
const double * levels_end = levels + size;
while (levels != levels_end)
{
*result = get(*levels);
++levels;
++result;
}
}
/// То же самое, но в случае пустого состояния возвращается NaN.
float getFloat(double level) const
{
return count
? get(level)
: std::numeric_limits<float>::quiet_NaN();
}
void getManyFloat(const double * levels, size_t size, float * result) const
{
if (count)
getMany(levels, size, result);
else
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<float>::quiet_NaN();
}
};
/** Вспомогательная структура для оптимизации в случае среднего количества значений
* - плоский массив, выделенный отдельно, в который кладутся все встреченные значения подряд.
*/
struct QuantileTimingMedium
{
/// sizeof - 24 байта.
using Array = PODArray<UInt16, 128>;
mutable Array elems; /// mutable потому что сортировка массива не считается изменением состояния.
QuantileTimingMedium() {}
QuantileTimingMedium(const UInt16 * begin, const UInt16 * end) : elems(begin, end) {}
void insert(UInt64 x)
{
if (unlikely(x > BIG_THRESHOLD))
x = BIG_THRESHOLD;
elems.emplace_back(x);
}
void merge(const QuantileTimingMedium & rhs)
{
elems.insert(rhs.elems.begin(), rhs.elems.end());
}
void serialize(WriteBuffer & buf) const
{
writeBinary(elems.size(), buf);
buf.write(reinterpret_cast<const char *>(&elems[0]), elems.size() * sizeof(elems[0]));
}
void deserialize(ReadBuffer & buf)
{
size_t size = 0;
readBinary(size, buf);
elems.resize(size);
buf.readStrict(reinterpret_cast<char *>(&elems[0]), size * sizeof(elems[0]));
}
UInt16 get(double level) const
{
UInt16 quantile = 0;
if (!elems.empty())
{
size_t n = level < 1
? level * elems.size()
: (elems.size() - 1);
/// Сортировка массива не будет считаться нарушением константности.
auto & array = const_cast<Array &>(elems);
std::nth_element(array.begin(), array.begin() + n, array.end());
quantile = array[n];
}
return quantile;
}
template <typename ResultType>
void getMany(const double * levels, const size_t * levels_permutation, size_t size, ResultType * result) const
{
size_t prev_n = 0;
auto & array = const_cast<Array &>(elems);
for (size_t i = 0; i < size; ++i)
{
auto level_index = levels_permutation[i];
auto level = levels[level_index];
size_t n = level < 1
? level * elems.size()
: (elems.size() - 1);
std::nth_element(array.begin() + prev_n, array.begin() + n, array.end());
result[level_index] = array[n];
prev_n = n;
}
}
/// То же самое, но в случае пустого состояния возвращается NaN.
float getFloat(double level) const
{
return !elems.empty()
? get(level)
: std::numeric_limits<float>::quiet_NaN();
}
void getManyFloat(const double * levels, const size_t * levels_permutation, size_t size, float * result) const
{
if (!elems.empty())
getMany(levels, levels_permutation, size, result);
else
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<float>::quiet_NaN();
}
};
#define SMALL_THRESHOLD 1024
#define BIG_SIZE ((BIG_THRESHOLD - SMALL_THRESHOLD) / BIG_PRECISION)
#define BIG_PRECISION 16
#define SIZE_OF_LARGE_WITHOUT_COUNT ((SMALL_THRESHOLD + BIG_SIZE) * sizeof(UInt64))
/** Для большого количества значений. Размер около 22 680 байт.
*/
class QuantileTimingLarge
{
private:
/// Общее число значений.
UInt64 count;
/// Использование UInt64 весьма расточительно.
/// Но UInt32 точно не хватает, а изобретать 6-байтные значения слишком сложно.
/// Число значений для каждого значения меньше small_threshold.
UInt64 count_small[SMALL_THRESHOLD];
/// Число значений для каждого значения от small_threshold до big_threshold, округлённого до big_precision.
UInt64 count_big[BIG_SIZE];
/// Получить значение квантиля по индексу в массиве count_big.
static inline UInt16 indexInBigToValue(size_t i)
{
return (i * BIG_PRECISION) + SMALL_THRESHOLD
+ (intHash32<0>(i) % BIG_PRECISION - (BIG_PRECISION / 2)); /// Небольшая рандомизация, чтобы не было заметно, что все значения чётные.
}
/// Позволяет перебрать значения гистограммы, пропуская нули.
class Iterator
{
private:
const UInt64 * begin;
const UInt64 * pos;
const UInt64 * end;
void adjust()
{
while (isValid() && 0 == *pos)
++pos;
}
public:
Iterator(const QuantileTimingLarge & parent)
: begin(parent.count_small), pos(begin), end(&parent.count_big[BIG_SIZE])
{
adjust();
}
bool isValid() const { return pos < end; }
void next()
{
++pos;
adjust();
}
UInt64 count() const { return *pos; }
UInt16 key() const
{
return pos - begin < SMALL_THRESHOLD
? pos - begin
: indexInBigToValue(pos - begin - SMALL_THRESHOLD);
}
};
public:
QuantileTimingLarge()
{
memset(this, 0, sizeof(*this));
}
void insert(UInt64 x)
{
insertWeighted(x, 1);
}
void insertWeighted(UInt64 x, size_t weight)
{
count += weight;
if (x < SMALL_THRESHOLD)
count_small[x] += weight;
else if (x < BIG_THRESHOLD)
count_big[(x - SMALL_THRESHOLD) / BIG_PRECISION] += weight;
}
void merge(const QuantileTimingLarge & rhs)
{
count += rhs.count;
for (size_t i = 0; i < SMALL_THRESHOLD; ++i)
count_small[i] += rhs.count_small[i];
for (size_t i = 0; i < BIG_SIZE; ++i)
count_big[i] += rhs.count_big[i];
}
void serialize(WriteBuffer & buf) const
{
writeBinary(count, buf);
if (count * 2 > SMALL_THRESHOLD + BIG_SIZE)
{
/// Простая сериализация для сильно заполненного случая.
buf.write(reinterpret_cast<const char *>(this) + sizeof(count), SIZE_OF_LARGE_WITHOUT_COUNT);
}
else
{
/// Более компактная сериализация для разреженного случая.
for (size_t i = 0; i < SMALL_THRESHOLD; ++i)
{
if (count_small[i])
{
writeBinary(UInt16(i), buf);
writeBinary(count_small[i], buf);
}
}
for (size_t i = 0; i < BIG_SIZE; ++i)
{
if (count_big[i])
{
writeBinary(UInt16(i + SMALL_THRESHOLD), buf);
writeBinary(count_big[i], buf);
}
}
/// Символизирует конец данных.
writeBinary(UInt16(BIG_THRESHOLD), buf);
}
}
void deserialize(ReadBuffer & buf)
{
readBinary(count, buf);
if (count * 2 > SMALL_THRESHOLD + BIG_SIZE)
{
buf.readStrict(reinterpret_cast<char *>(this) + sizeof(count), SIZE_OF_LARGE_WITHOUT_COUNT);
}
else
{
while (true)
{
UInt16 index = 0;
readBinary(index, buf);
if (index == BIG_THRESHOLD)
break;
UInt64 count = 0;
readBinary(count, buf);
if (index < SMALL_THRESHOLD)
count_small[index] = count;
else
count_big[index - SMALL_THRESHOLD] = count;
}
}
}
/// Получить значение квантиля уровня level. Уровень должен быть от 0 до 1.
UInt16 get(double level) const
{
2016-03-13 19:00:59 +00:00
UInt64 pos = std::ceil(count * level);
UInt64 accumulated = 0;
Iterator it(*this);
while (it.isValid())
{
accumulated += it.count();
if (accumulated >= pos)
break;
it.next();
}
return it.isValid() ? it.key() : BIG_THRESHOLD;
}
/// Получить значения size квантилей уровней levels. Записать size результатов начиная с адреса result.
/// indices - массив индексов levels такой, что соответствующие элементы будут идти в порядке по возрастанию.
template <typename ResultType>
void getMany(const double * levels, const size_t * indices, size_t size, ResultType * result) const
{
const auto indices_end = indices + size;
auto index = indices;
2016-03-13 19:00:59 +00:00
UInt64 pos = std::ceil(count * levels[*index]);
UInt64 accumulated = 0;
Iterator it(*this);
while (it.isValid())
{
accumulated += it.count();
while (accumulated >= pos)
{
result[*index] = it.key();
++index;
if (index == indices_end)
return;
2016-03-13 19:00:59 +00:00
pos = std::ceil(count * levels[*index]);
}
it.next();
}
while (index != indices_end)
{
result[*index] = BIG_THRESHOLD;
++index;
}
}
/// То же самое, но в случае пустого состояния возвращается NaN.
float getFloat(double level) const
{
return count
? get(level)
: std::numeric_limits<float>::quiet_NaN();
}
void getManyFloat(const double * levels, const size_t * levels_permutation, size_t size, float * result) const
{
if (count)
getMany(levels, levels_permutation, size, result);
else
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<float>::quiet_NaN();
}
};
}
/** sizeof - 64 байта.
* Если их не хватает - выделяет дополнительно до 20 КБ памяти.
*/
class QuantileTiming : private boost::noncopyable
{
private:
union
{
detail::QuantileTimingTiny tiny;
detail::QuantileTimingMedium medium;
detail::QuantileTimingLarge * large;
};
enum class Kind : UInt8
{
Tiny = 1,
Medium = 2,
Large = 3
};
Kind which() const
{
if (tiny.count <= TINY_MAX_ELEMS)
return Kind::Tiny;
if (tiny.count == TINY_MAX_ELEMS + 1)
return Kind::Medium;
return Kind::Large;
}
void tinyToMedium()
{
detail::QuantileTimingTiny tiny_copy = tiny;
new (&medium) detail::QuantileTimingMedium(tiny_copy.elems, tiny_copy.elems + tiny_copy.count);
tiny.count = TINY_MAX_ELEMS + 1;
}
void mediumToLarge()
{
if (current_memory_tracker)
current_memory_tracker->alloc(sizeof(detail::QuantileTimingLarge));
/// На время копирования данных из medium, устанавливать значение large ещё нельзя (иначе оно перезатрёт часть данных).
detail::QuantileTimingLarge * tmp_large = new detail::QuantileTimingLarge;
for (const auto & elem : medium.elems)
tmp_large->insert(elem);
medium.~QuantileTimingMedium();
large = tmp_large;
tiny.count = TINY_MAX_ELEMS + 2;
}
void tinyToLarge()
{
if (current_memory_tracker)
current_memory_tracker->alloc(sizeof(detail::QuantileTimingLarge));
/// На время копирования данных из medium, устанавливать значение large ещё нельзя (иначе оно перезатрёт часть данных).
detail::QuantileTimingLarge * tmp_large = new detail::QuantileTimingLarge;
for (size_t i = 0; i < tiny.count; ++i)
tmp_large->insert(tiny.elems[i]);
large = tmp_large;
tiny.count = TINY_MAX_ELEMS + 2;
}
bool mediumIsWorthToConvertToLarge() const
{
return medium.elems.size() >= sizeof(detail::QuantileTimingLarge) / sizeof(medium.elems[0]) / 2;
}
public:
QuantileTiming()
{
tiny.count = 0;
}
~QuantileTiming()
{
Kind kind = which();
if (kind == Kind::Medium)
{
medium.~QuantileTimingMedium();
}
else if (kind == Kind::Large)
{
delete large;
if (current_memory_tracker)
current_memory_tracker->free(sizeof(detail::QuantileTimingLarge));
}
}
void insert(UInt64 x)
{
if (tiny.count < TINY_MAX_ELEMS)
{
tiny.insert(x);
}
else
{
if (unlikely(tiny.count == TINY_MAX_ELEMS))
tinyToMedium();
if (which() == Kind::Medium)
{
if (unlikely(mediumIsWorthToConvertToLarge()))
{
mediumToLarge();
large->insert(x);
}
else
medium.insert(x);
}
else
large->insert(x);
}
}
void insertWeighted(UInt64 x, size_t weight)
{
/// NOTE: Первое условие - для того, чтобы избежать переполнения.
if (weight < TINY_MAX_ELEMS && tiny.count + weight <= TINY_MAX_ELEMS)
{
for (size_t i = 0; i < weight; ++i)
tiny.insert(x);
}
else
{
if (unlikely(tiny.count <= TINY_MAX_ELEMS))
tinyToLarge(); /// Для weighted варианта medium не используем - предположительно, нецелесообразно.
large->insertWeighted(x, weight);
}
}
/// NOTE Слишком сложный код.
void merge(const QuantileTiming & rhs)
{
if (tiny.count + rhs.tiny.count <= TINY_MAX_ELEMS)
{
tiny.merge(rhs.tiny);
}
else
{
auto kind = which();
auto rhs_kind = rhs.which();
/// Если то, с чем сливаем, имеет бОльшую структуру данных, то приводим текущую структуру к такой же.
if (kind == Kind::Tiny && rhs_kind == Kind::Medium)
{
tinyToMedium();
kind = Kind::Medium;
}
else if (kind == Kind::Tiny && rhs_kind == Kind::Large)
{
tinyToLarge();
kind = Kind::Large;
}
else if (kind == Kind::Medium && rhs_kind == Kind::Large)
{
mediumToLarge();
kind = Kind::Large;
}
/// Случай, когда два состояния маленькие, но при их слиянии, они превратятся в средние.
else if (kind == Kind::Tiny && rhs_kind == Kind::Tiny)
{
tinyToMedium();
kind = Kind::Medium;
}
if (kind == Kind::Medium && rhs_kind == Kind::Medium)
{
medium.merge(rhs.medium);
}
else if (kind == Kind::Large && rhs_kind == Kind::Large)
{
large->merge(*rhs.large);
}
else if (kind == Kind::Medium && rhs_kind == Kind::Tiny)
{
medium.elems.insert(rhs.tiny.elems, rhs.tiny.elems + rhs.tiny.count);
}
else if (kind == Kind::Large && rhs_kind == Kind::Tiny)
{
for (size_t i = 0; i < rhs.tiny.count; ++i)
large->insert(rhs.tiny.elems[i]);
}
else if (kind == Kind::Large && rhs_kind == Kind::Medium)
{
for (const auto & elem : rhs.medium.elems)
large->insert(elem);
}
else
throw Exception("Logical error in QuantileTiming::merge function: not all cases are covered", ErrorCodes::LOGICAL_ERROR);
/// Для детерминированности, мы должны всегда переводить в large при достижении условия на размер
/// - независимо от порядка мерджей.
if (kind == Kind::Medium && unlikely(mediumIsWorthToConvertToLarge()))
{
mediumToLarge();
}
}
}
void serialize(WriteBuffer & buf) const
{
auto kind = which();
DB::writePODBinary(kind, buf);
if (kind == Kind::Tiny)
tiny.serialize(buf);
else if (kind == Kind::Medium)
medium.serialize(buf);
else
large->serialize(buf);
}
/// Вызывается для пустого объекта.
void deserialize(ReadBuffer & buf)
{
Kind kind;
DB::readPODBinary(kind, buf);
if (kind == Kind::Tiny)
{
tiny.deserialize(buf);
}
else if (kind == Kind::Medium)
{
tinyToMedium();
medium.deserialize(buf);
}
else if (kind == Kind::Large)
{
tinyToLarge();
large->deserialize(buf);
}
}
/// Получить значение квантиля уровня level. Уровень должен быть от 0 до 1.
UInt16 get(double level) const
{
Kind kind = which();
if (kind == Kind::Tiny)
{
tiny.prepare();
return tiny.get(level);
}
else if (kind == Kind::Medium)
{
return medium.get(level);
}
else
{
return large->get(level);
}
}
/// Получить значения size квантилей уровней levels. Записать size результатов начиная с адреса result.
template <typename ResultType>
void getMany(const double * levels, const size_t * levels_permutation, size_t size, ResultType * result) const
{
Kind kind = which();
if (kind == Kind::Tiny)
{
tiny.prepare();
tiny.getMany(levels, size, result);
}
else if (kind == Kind::Medium)
{
medium.getMany(levels, levels_permutation, size, result);
}
else if (kind == Kind::Large)
{
large->getMany(levels, levels_permutation, size, result);
}
}
/// То же самое, но в случае пустого состояния возвращается NaN.
float getFloat(double level) const
{
return tiny.count
? get(level)
: std::numeric_limits<float>::quiet_NaN();
}
void getManyFloat(const double * levels, const size_t * levels_permutation, size_t size, float * result) const
{
if (tiny.count)
getMany(levels, levels_permutation, size, result);
else
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<float>::quiet_NaN();
}
};
#undef SMALL_THRESHOLD
#undef BIG_THRESHOLD
#undef BIG_SIZE
#undef BIG_PRECISION
#undef TINY_MAX_ELEMS
template <typename ArgumentFieldType>
class AggregateFunctionQuantileTiming final : public IUnaryAggregateFunction<QuantileTiming, AggregateFunctionQuantileTiming<ArgumentFieldType> >
{
private:
double level;
public:
AggregateFunctionQuantileTiming(double level_ = 0.5) : level(level_) {}
2015-11-11 02:04:23 +00:00
String getName() const override { return "quantileTiming"; }
2015-11-11 02:04:23 +00:00
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeFloat32>();
}
void setArgument(const DataTypePtr & argument)
{
}
2015-11-11 02:04:23 +00:00
void setParameters(const Array & params) override
{
if (params.size() != 1)
throw Exception("Aggregate function " + getName() + " requires exactly one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
level = apply_visitor(FieldVisitorConvertToNumber<Float64>(), params[0]);
}
void addImpl(AggregateDataPtr place, const IColumn & column, size_t row_num, Arena *) const
{
this->data(place).insert(static_cast<const ColumnVector<ArgumentFieldType> &>(column).getData()[row_num]);
}
2015-11-11 02:04:23 +00:00
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
this->data(place).merge(this->data(rhs));
}
2015-11-11 02:04:23 +00:00
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
2016-09-22 23:26:08 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).deserialize(buf);
}
2015-11-11 02:04:23 +00:00
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
static_cast<ColumnFloat32 &>(to).getData().push_back(this->data(place).getFloat(level));
}
};
/** То же самое, но с двумя аргументами. Второй аргумент - "вес" (целое число) - сколько раз учитывать значение.
*/
template <typename ArgumentFieldType, typename WeightFieldType>
2015-11-21 18:56:54 +00:00
class AggregateFunctionQuantileTimingWeighted final
: public IBinaryAggregateFunction<QuantileTiming, AggregateFunctionQuantileTimingWeighted<ArgumentFieldType, WeightFieldType>>
{
private:
double level;
public:
AggregateFunctionQuantileTimingWeighted(double level_ = 0.5) : level(level_) {}
2015-11-11 02:04:23 +00:00
String getName() const override { return "quantileTimingWeighted"; }
2015-11-11 02:04:23 +00:00
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeFloat32>();
}
2015-11-21 18:56:54 +00:00
void setArgumentsImpl(const DataTypes & arguments)
{
}
2015-11-11 02:04:23 +00:00
void setParameters(const Array & params) override
{
if (params.size() != 1)
throw Exception("Aggregate function " + getName() + " requires exactly one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
level = apply_visitor(FieldVisitorConvertToNumber<Float64>(), params[0]);
}
void addImpl(AggregateDataPtr place, const IColumn & column_value, const IColumn & column_weight, size_t row_num, Arena *) const
{
this->data(place).insertWeighted(
2015-11-21 18:56:54 +00:00
static_cast<const ColumnVector<ArgumentFieldType> &>(column_value).getData()[row_num],
static_cast<const ColumnVector<WeightFieldType> &>(column_weight).getData()[row_num]);
}
2015-11-11 02:04:23 +00:00
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
this->data(place).merge(this->data(rhs));
}
2015-11-11 02:04:23 +00:00
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
2016-09-22 23:26:08 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).deserialize(buf);
}
2015-11-11 02:04:23 +00:00
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
static_cast<ColumnFloat32 &>(to).getData().push_back(this->data(place).getFloat(level));
}
};
/** То же самое, но позволяет вычислить сразу несколько квантилей.
* Для этого, принимает в качестве параметров несколько уровней. Пример: quantilesTiming(0.5, 0.8, 0.9, 0.95)(ConnectTiming).
* Возвращает массив результатов.
*/
template <typename ArgumentFieldType>
class AggregateFunctionQuantilesTiming final : public IUnaryAggregateFunction<QuantileTiming, AggregateFunctionQuantilesTiming<ArgumentFieldType> >
{
private:
QuantileLevels<double> levels;
public:
2015-11-11 02:04:23 +00:00
String getName() const override { return "quantilesTiming"; }
2015-11-11 02:04:23 +00:00
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeFloat32>());
}
void setArgument(const DataTypePtr & argument)
{
}
2015-11-11 02:04:23 +00:00
void setParameters(const Array & params) override
{
levels.set(params);
}
void addImpl(AggregateDataPtr place, const IColumn & column, size_t row_num, Arena *) const
{
this->data(place).insert(static_cast<const ColumnVector<ArgumentFieldType> &>(column).getData()[row_num]);
}
2015-11-11 02:04:23 +00:00
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
this->data(place).merge(this->data(rhs));
}
2015-11-11 02:04:23 +00:00
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
2016-09-22 23:26:08 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).deserialize(buf);
}
2015-11-11 02:04:23 +00:00
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
ColumnArray::Offsets_t & offsets_to = arr_to.getOffsets();
size_t size = levels.size();
offsets_to.push_back((offsets_to.size() == 0 ? 0 : offsets_to.back()) + size);
typename ColumnFloat32::Container_t & data_to = static_cast<ColumnFloat32 &>(arr_to.getData()).getData();
size_t old_size = data_to.size();
data_to.resize(data_to.size() + size);
this->data(place).getManyFloat(&levels.levels[0], &levels.permutation[0], size, &data_to[old_size]);
}
};
template <typename ArgumentFieldType, typename WeightFieldType>
class AggregateFunctionQuantilesTimingWeighted final
: public IBinaryAggregateFunction<QuantileTiming, AggregateFunctionQuantilesTimingWeighted<ArgumentFieldType, WeightFieldType>>
{
private:
QuantileLevels<double> levels;
public:
2015-11-11 02:04:23 +00:00
String getName() const override { return "quantilesTimingWeighted"; }
2015-11-11 02:04:23 +00:00
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeFloat32>());
}
void setArgumentsImpl(const DataTypes & arguments)
{
}
2015-11-11 02:04:23 +00:00
void setParameters(const Array & params) override
{
levels.set(params);
}
void addImpl(AggregateDataPtr place, const IColumn & column_value, const IColumn & column_weight, size_t row_num, Arena *) const
{
this->data(place).insertWeighted(
static_cast<const ColumnVector<ArgumentFieldType> &>(column_value).getData()[row_num],
static_cast<const ColumnVector<WeightFieldType> &>(column_weight).getData()[row_num]);
}
2015-11-11 02:04:23 +00:00
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
this->data(place).merge(this->data(rhs));
}
2015-11-11 02:04:23 +00:00
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
2016-09-22 23:26:08 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
{
this->data(place).deserialize(buf);
}
2015-11-11 02:04:23 +00:00
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
ColumnArray::Offsets_t & offsets_to = arr_to.getOffsets();
size_t size = levels.size();
offsets_to.push_back((offsets_to.size() == 0 ? 0 : offsets_to.back()) + size);
typename ColumnFloat32::Container_t & data_to = static_cast<ColumnFloat32 &>(arr_to.getData()).getData();
size_t old_size = data_to.size();
data_to.resize(data_to.size() + size);
this->data(place).getManyFloat(&levels.levels[0], &levels.permutation[0], size, &data_to[old_size]);
}
};
}