ClickHouse/dbms/src/Functions/FunctionMathUnaryFloat64.h

183 lines
5.7 KiB
C++
Raw Normal View History

#pragma once
#include <Core/callOnTypeIndex.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnDecimal.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Common/config.h>
/** More efficient implementations of mathematical functions are possible when using a separate library.
* Disabled due to licence compatibility limitations.
* To enable: download http://www.agner.org/optimize/vectorclass.zip and unpack to contrib/vectorclass
* Then rebuild with -DENABLE_VECTORCLASS=1
*/
#if USE_VECTORCLASS
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshift-negative-value"
#endif
#include <vectorf128.h> // Y_IGNORE
#include <vectormath_exp.h> // Y_IGNORE
#include <vectormath_trig.h> // Y_IGNORE
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_COLUMN;
}
template <typename Impl>
class FunctionMathUnaryFloat64 : public IFunction
{
public:
static constexpr auto name = Impl::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionMathUnaryFloat64>(); }
static_assert(Impl::rows_per_iteration > 0, "Impl must process at least one row per iteration");
private:
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 1; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
const auto & arg = arguments.front();
if (!isNumber(arg) && !isDecimal(arg))
throw Exception{"Illegal type " + arg->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
return std::make_shared<DataTypeFloat64>();
}
template <typename T>
static void executeInIterations(const T * src_data, Float64 * dst_data, size_t size)
{
const size_t rows_remaining = size % Impl::rows_per_iteration;
const size_t rows_size = size - rows_remaining;
for (size_t i = 0; i < rows_size; i += Impl::rows_per_iteration)
Impl::execute(&src_data[i], &dst_data[i]);
if (rows_remaining != 0)
{
T src_remaining[Impl::rows_per_iteration];
memcpy(src_remaining, &src_data[rows_size], rows_remaining * sizeof(T));
memset(src_remaining + rows_remaining, 0, (Impl::rows_per_iteration - rows_remaining) * sizeof(T));
Float64 dst_remaining[Impl::rows_per_iteration];
Impl::execute(src_remaining, dst_remaining);
memcpy(&dst_data[rows_size], dst_remaining, rows_remaining * sizeof(Float64));
}
}
template <typename T>
static bool execute(Block & block, const ColumnVector<T> * col, const size_t result)
{
const auto & src_data = col->getData();
const size_t size = src_data.size();
auto dst = ColumnVector<Float64>::create();
auto & dst_data = dst->getData();
dst_data.resize(size);
executeInIterations(src_data.data(), dst_data.data(), size);
block.getByPosition(result).column = std::move(dst);
return true;
}
template <typename T>
static bool execute(Block & block, const ColumnDecimal<T> * col, const size_t result)
{
const auto & src_data = col->getData();
const size_t size = src_data.size();
UInt32 scale = src_data.getScale();
auto dst = ColumnVector<Float64>::create();
auto & dst_data = dst->getData();
dst_data.resize(size);
for (size_t i = 0; i < size; ++i)
dst_data[i] = convertFromDecimal<DataTypeDecimal<T>, DataTypeNumber<Float64>>(src_data[i], scale);
executeInIterations(dst_data.data(), dst_data.data(), size);
block.getByPosition(result).column = std::move(dst);
return true;
}
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t /*input_rows_count*/) override
{
const ColumnWithTypeAndName & col = block.getByPosition(arguments[0]);
auto call = [&](const auto & types) -> bool
{
using Types = std::decay_t<decltype(types)>;
using Type = typename Types::RightType;
using ColVecType = std::conditional_t<IsDecimalNumber<Type>, ColumnDecimal<Type>, ColumnVector<Type>>;
const auto col_vec = checkAndGetColumn<ColVecType>(col.column.get());
return execute<Type>(block, col_vec, result);
};
if (!callOnBasicType<void, true, true, true, false>(col.type->getTypeId(), call))
throw Exception{"Illegal column " + col.column->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
};
template <typename Name, Float64(Function)(Float64)>
struct UnaryFunctionPlain
{
static constexpr auto name = Name::name;
static constexpr auto rows_per_iteration = 1;
template <typename T>
static void execute(const T * src, Float64 * dst)
{
dst[0] = static_cast<Float64>(Function(static_cast<Float64>(src[0])));
}
};
#if USE_VECTORCLASS
template <typename Name, Vec2d(Function)(const Vec2d &)>
struct UnaryFunctionVectorized
{
static constexpr auto name = Name::name;
static constexpr auto rows_per_iteration = 2;
template <typename T>
static void execute(const T * src, Float64 * dst)
{
const auto result = Function(Vec2d(src[0], src[1]));
result.store(dst);
}
};
#else
#define UnaryFunctionVectorized UnaryFunctionPlain
#endif
}