ClickHouse/docs/zh/getting-started/example-datasets/nyc-taxi.md

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

387 lines
38 KiB
Markdown
Raw Normal View History

2020-11-27 10:20:57 +00:00
---
2022-08-26 19:07:59 +00:00
slug: /zh/getting-started/example-datasets/nyc-taxi
2022-04-10 23:08:18 +00:00
sidebar_position: 20
sidebar_label: New York Taxi Data
2020-11-27 10:20:57 +00:00
---
# 纽约出租车数据 {#niu-yue-shi-chu-zu-che-shu-ju}
2019-10-28 04:18:22 +00:00
纽约市出租车数据有以下两个方式获取:
2020-11-27 10:20:57 +00:00
- 从原始数据导入
- 下载处理好的数据
2019-10-28 04:18:22 +00:00
## 怎样导入原始数据 {#zen-yang-dao-ru-yuan-shi-shu-ju}
2020-11-27 10:20:57 +00:00
可以参考 https://github.com/toddwschneider/nyc-taxi-data 和 http://tech.marksblogg.com/billion-nyc-taxi-rides-redshift.html 中的关于数据集结构描述与数据下载指令说明。
2020-11-27 10:20:57 +00:00
数据集包含227GB的CSV文件。在1Gbig的带宽下下载大约需要一个小时这大约需要一个小时的下载时间(从s3.amazonaws.com并行下载时间至少可以缩减一半)。
下载时注意损坏的文件。可以检查文件大小并重新下载损坏的文件。
有些文件中包含一些无效的行,您可以使用如下语句修复他们:
``` bash
sed -E '/(.*,){18,}/d' data/yellow_tripdata_2010-02.csv > data/yellow_tripdata_2010-02.csv_
sed -E '/(.*,){18,}/d' data/yellow_tripdata_2010-03.csv > data/yellow_tripdata_2010-03.csv_
mv data/yellow_tripdata_2010-02.csv_ data/yellow_tripdata_2010-02.csv
mv data/yellow_tripdata_2010-03.csv_ data/yellow_tripdata_2010-03.csv
```
2020-11-27 10:20:57 +00:00
然后必须在PostgreSQL中对数据进行预处理。这将创建多边形中选择的点(将地图上的点与纽约市的行政区相匹配)并使用连接将所有数据合并到一个非规范化的平面表中。为此您需要安装支持PostGIS的PostgreSQL。
运行`initialize_database.sh`时要小心,并手动重新检查是否正确创建了所有表。
在PostgreSQL中处理每个月的数据大约需要20-30分钟总共大约需要48小时。
您可以按如下方式检查下载的行数:
``` bash
2019-10-28 04:18:22 +00:00
$ time psql nyc-taxi-data -c "SELECT count(*) FROM trips;"
## Count
1298979494
(1 row)
real 7m9.164s
```
(根据Mark Litwintschik的系列博客报道数据略多余11亿行)
PostgreSQL处理这些数据大概需要370GB的磁盘空间。
从PostgreSQL中导出数据
``` sql
COPY
(
SELECT trips.id,
trips.vendor_id,
trips.pickup_datetime,
trips.dropoff_datetime,
trips.store_and_fwd_flag,
trips.rate_code_id,
trips.pickup_longitude,
trips.pickup_latitude,
trips.dropoff_longitude,
trips.dropoff_latitude,
trips.passenger_count,
trips.trip_distance,
trips.fare_amount,
trips.extra,
trips.mta_tax,
trips.tip_amount,
trips.tolls_amount,
trips.ehail_fee,
trips.improvement_surcharge,
trips.total_amount,
trips.payment_type,
trips.trip_type,
trips.pickup,
trips.dropoff,
cab_types.type cab_type,
weather.precipitation_tenths_of_mm rain,
weather.snow_depth_mm,
weather.snowfall_mm,
weather.max_temperature_tenths_degrees_celsius max_temp,
weather.min_temperature_tenths_degrees_celsius min_temp,
weather.average_wind_speed_tenths_of_meters_per_second wind,
pick_up.gid pickup_nyct2010_gid,
pick_up.ctlabel pickup_ctlabel,
pick_up.borocode pickup_borocode,
pick_up.boroname pickup_boroname,
pick_up.ct2010 pickup_ct2010,
pick_up.boroct2010 pickup_boroct2010,
pick_up.cdeligibil pickup_cdeligibil,
pick_up.ntacode pickup_ntacode,
pick_up.ntaname pickup_ntaname,
pick_up.puma pickup_puma,
drop_off.gid dropoff_nyct2010_gid,
drop_off.ctlabel dropoff_ctlabel,
drop_off.borocode dropoff_borocode,
drop_off.boroname dropoff_boroname,
drop_off.ct2010 dropoff_ct2010,
drop_off.boroct2010 dropoff_boroct2010,
drop_off.cdeligibil dropoff_cdeligibil,
drop_off.ntacode dropoff_ntacode,
drop_off.ntaname dropoff_ntaname,
drop_off.puma dropoff_puma
FROM trips
LEFT JOIN cab_types
ON trips.cab_type_id = cab_types.id
LEFT JOIN central_park_weather_observations_raw weather
ON weather.date = trips.pickup_datetime::date
LEFT JOIN nyct2010 pick_up
ON pick_up.gid = trips.pickup_nyct2010_gid
LEFT JOIN nyct2010 drop_off
ON drop_off.gid = trips.dropoff_nyct2010_gid
) TO '/opt/milovidov/nyc-taxi-data/trips.tsv';
```
2020-11-27 10:20:57 +00:00
数据快照的创建速度约为每秒50MB。 在创建快照时PostgreSQL以每秒约28MB的速度从磁盘读取数据。
这大约需要5个小时。 最终生成的TSV文件为590612904969 bytes。
在ClickHouse中创建临时表
``` sql
CREATE TABLE trips
(
trip_id UInt32,
vendor_id String,
pickup_datetime DateTime,
dropoff_datetime Nullable(DateTime),
store_and_fwd_flag Nullable(FixedString(1)),
rate_code_id Nullable(UInt8),
pickup_longitude Nullable(Float64),
pickup_latitude Nullable(Float64),
dropoff_longitude Nullable(Float64),
dropoff_latitude Nullable(Float64),
passenger_count Nullable(UInt8),
trip_distance Nullable(Float64),
fare_amount Nullable(Float32),
extra Nullable(Float32),
mta_tax Nullable(Float32),
tip_amount Nullable(Float32),
tolls_amount Nullable(Float32),
ehail_fee Nullable(Float32),
improvement_surcharge Nullable(Float32),
total_amount Nullable(Float32),
payment_type Nullable(String),
trip_type Nullable(UInt8),
pickup Nullable(String),
dropoff Nullable(String),
cab_type Nullable(String),
precipitation Nullable(UInt8),
snow_depth Nullable(UInt8),
snowfall Nullable(UInt8),
max_temperature Nullable(UInt8),
min_temperature Nullable(UInt8),
average_wind_speed Nullable(UInt8),
pickup_nyct2010_gid Nullable(UInt8),
pickup_ctlabel Nullable(String),
pickup_borocode Nullable(UInt8),
pickup_boroname Nullable(String),
pickup_ct2010 Nullable(String),
pickup_boroct2010 Nullable(String),
pickup_cdeligibil Nullable(FixedString(1)),
pickup_ntacode Nullable(String),
pickup_ntaname Nullable(String),
pickup_puma Nullable(String),
dropoff_nyct2010_gid Nullable(UInt8),
dropoff_ctlabel Nullable(String),
dropoff_borocode Nullable(UInt8),
dropoff_boroname Nullable(String),
dropoff_ct2010 Nullable(String),
dropoff_boroct2010 Nullable(String),
dropoff_cdeligibil Nullable(String),
dropoff_ntacode Nullable(String),
dropoff_ntaname Nullable(String),
dropoff_puma Nullable(String)
) ENGINE = Log;
```
接下来,需要将字段转换为更正确的数据类型并且在可能的情况下消除NULL。
``` bash
2019-10-28 04:18:22 +00:00
$ time clickhouse-client --query="INSERT INTO trips FORMAT TabSeparated" < trips.tsv
real 75m56.214s
```
数据的读取速度为112-140 Mb/秒。
通过这种方式将数据加载到Log表中需要76分钟。
2020-11-27 10:20:57 +00:00
这个表中的数据需要使用142GB的磁盘空间.
(也可以直接使用`COPY ... TO PROGRAM`从Postgres中导入数据
2020-11-27 10:20:57 +00:00
数据中所有与天气相关的字段(precipitation……average_wind_speed)都填充了NULL。 所以,我们将从最终数据集中删除它们
首先,我们使用单台服务器创建表,后面我们将在多台节点上创建这些表。
创建表结构并写入数据:
``` sql
CREATE TABLE trips_mergetree
ENGINE = MergeTree(pickup_date, pickup_datetime, 8192)
AS SELECT
trip_id,
CAST(vendor_id AS Enum8('1' = 1, '2' = 2, 'CMT' = 3, 'VTS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11, 'B02617' = 12, 'B02682' = 13, 'B02764' = 14)) AS vendor_id,
toDate(pickup_datetime) AS pickup_date,
ifNull(pickup_datetime, toDateTime(0)) AS pickup_datetime,
toDate(dropoff_datetime) AS dropoff_date,
ifNull(dropoff_datetime, toDateTime(0)) AS dropoff_datetime,
assumeNotNull(store_and_fwd_flag) IN ('Y', '1', '2') AS store_and_fwd_flag,
assumeNotNull(rate_code_id) AS rate_code_id,
assumeNotNull(pickup_longitude) AS pickup_longitude,
assumeNotNull(pickup_latitude) AS pickup_latitude,
assumeNotNull(dropoff_longitude) AS dropoff_longitude,
assumeNotNull(dropoff_latitude) AS dropoff_latitude,
assumeNotNull(passenger_count) AS passenger_count,
assumeNotNull(trip_distance) AS trip_distance,
assumeNotNull(fare_amount) AS fare_amount,
assumeNotNull(extra) AS extra,
assumeNotNull(mta_tax) AS mta_tax,
assumeNotNull(tip_amount) AS tip_amount,
assumeNotNull(tolls_amount) AS tolls_amount,
assumeNotNull(ehail_fee) AS ehail_fee,
assumeNotNull(improvement_surcharge) AS improvement_surcharge,
assumeNotNull(total_amount) AS total_amount,
CAST((assumeNotNull(payment_type) AS pt) IN ('CSH', 'CASH', 'Cash', 'CAS', 'Cas', '1') ? 'CSH' : (pt IN ('CRD', 'Credit', 'Cre', 'CRE', 'CREDIT', '2') ? 'CRE' : (pt IN ('NOC', 'No Charge', 'No', '3') ? 'NOC' : (pt IN ('DIS', 'Dispute', 'Dis', '4') ? 'DIS' : 'UNK'))) AS Enum8('CSH' = 1, 'CRE' = 2, 'UNK' = 0, 'NOC' = 3, 'DIS' = 4)) AS payment_type_,
assumeNotNull(trip_type) AS trip_type,
ifNull(toFixedString(unhex(pickup), 25), toFixedString('', 25)) AS pickup,
ifNull(toFixedString(unhex(dropoff), 25), toFixedString('', 25)) AS dropoff,
CAST(assumeNotNull(cab_type) AS Enum8('yellow' = 1, 'green' = 2, 'uber' = 3)) AS cab_type,
assumeNotNull(pickup_nyct2010_gid) AS pickup_nyct2010_gid,
toFloat32(ifNull(pickup_ctlabel, '0')) AS pickup_ctlabel,
assumeNotNull(pickup_borocode) AS pickup_borocode,
CAST(assumeNotNull(pickup_boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' = 2, 'Staten Island' = 5)) AS pickup_boroname,
toFixedString(ifNull(pickup_ct2010, '000000'), 6) AS pickup_ct2010,
toFixedString(ifNull(pickup_boroct2010, '0000000'), 7) AS pickup_boroct2010,
CAST(assumeNotNull(ifNull(pickup_cdeligibil, ' ')) AS Enum8(' ' = 0, 'E' = 1, 'I' = 2)) AS pickup_cdeligibil,
toFixedString(ifNull(pickup_ntacode, '0000'), 4) AS pickup_ntacode,
CAST(assumeNotNull(pickup_ntaname) AS Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142, 'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village' = 147, 'S
toUInt16(ifNull(pickup_puma, '0')) AS pickup_puma,
assumeNotNull(dropoff_nyct2010_gid) AS dropoff_nyct2010_gid,
toFloat32(ifNull(dropoff_ctlabel, '0')) AS dropoff_ctlabel,
assumeNotNull(dropoff_borocode) AS dropoff_borocode,
CAST(assumeNotNull(dropoff_boroname) AS Enum8('Manhattan' = 1, 'Queens' = 4, 'Brooklyn' = 3, '' = 0, 'Bronx' = 2, 'Staten Island' = 5)) AS dropoff_boroname,
toFixedString(ifNull(dropoff_ct2010, '000000'), 6) AS dropoff_ct2010,
toFixedString(ifNull(dropoff_boroct2010, '0000000'), 7) AS dropoff_boroct2010,
CAST(assumeNotNull(ifNull(dropoff_cdeligibil, ' ')) AS Enum8(' ' = 0, 'E' = 1, 'I' = 2)) AS dropoff_cdeligibil,
toFixedString(ifNull(dropoff_ntacode, '0000'), 4) AS dropoff_ntacode,
CAST(assumeNotNull(dropoff_ntaname) AS Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' = 106, 'Middle Village' = 107, 'Midtown-Midtown South' = 108, 'Midwood' = 109, 'Morningside Heights' = 110, 'Morrisania-Melrose' = 111, 'Mott Haven-Port Morris' = 112, 'Mount Hope' = 113, 'Murray Hill' = 114, 'Murray Hill-Kips Bay' = 115, 'New Brighton-Silver Lake' = 116, 'New Dorp-Midland Beach' = 117, 'New Springville-Bloomfield-Travis' = 118, 'North Corona' = 119, 'North Riverdale-Fieldston-Riverdale' = 120, 'North Side-South Side' = 121, 'Norwood' = 122, 'Oakland Gardens' = 123, 'Oakwood-Oakwood Beach' = 124, 'Ocean Hill' = 125, 'Ocean Parkway South' = 126, 'Old Astoria' = 127, 'Old Town-Dongan Hills-South Beach' = 128, 'Ozone Park' = 129, 'Park Slope-Gowanus' = 130, 'Parkchester' = 131, 'Pelham Bay-Country Club-City Island' = 132, 'Pelham Parkway' = 133, 'Pomonok-Flushing Heights-Hillcrest' = 134, 'Port Richmond' = 135, 'Prospect Heights' = 136, 'Prospect Lefferts Gardens-Wingate' = 137, 'Queens Village' = 138, 'Queensboro Hill' = 139, 'Queensbridge-Ravenswood-Long Island City' = 140, 'Rego Park' = 141, 'Richmond Hill' = 142, 'Ridgewood' = 143, 'Rikers Island' = 144, 'Rosedale' = 145, 'Rossville-Woodrow' = 146, 'Rugby-Remsen Village' = 147, '
toUInt16(ifNull(dropoff_puma, '0')) AS dropoff_puma
FROM trips
```
这需要3030秒速度约为每秒428,000行。
2020-11-27 10:20:57 +00:00
要加快速度,可以使用`Log`引擎替换`MergeTree`引擎来创建表。 在这种情况下下载速度超过200秒。
这个表需要使用126GB的磁盘空间。
``` sql
2019-10-28 04:18:22 +00:00
SELECT formatReadableSize(sum(bytes)) FROM system.parts WHERE table = 'trips_mergetree' AND active
```
``` text
┌─formatReadableSize(sum(bytes))─┐
│ 126.18 GiB │
└────────────────────────────────┘
```
除此之外你还可以在MergeTree上运行OPTIMIZE查询来进行优化。但这不是必须的因为即使在没有进行优化的情况下它的表现依然是很好的。
## 下载预处理好的分区数据 {#xia-zai-yu-chu-li-hao-de-fen-qu-shu-ju}
2019-10-28 04:18:22 +00:00
``` bash
2021-09-22 00:22:57 +00:00
$ curl -O https://datasets.clickhouse.com/trips_mergetree/partitions/trips_mergetree.tar
2019-10-28 04:18:22 +00:00
$ tar xvf trips_mergetree.tar -C /var/lib/clickhouse # path to ClickHouse data directory
$ # check permissions of unpacked data, fix if required
$ sudo service clickhouse-server restart
$ clickhouse-client --query "select count(*) from datasets.trips_mergetree"
```
!!! info "信息"
2020-11-27 10:20:57 +00:00
如果要运行下面的SQL查询必须使用完整的表名`datasets.trips_mergetree`。
2019-10-28 04:18:22 +00:00
## 单台服务器运行结果 {#dan-tai-fu-wu-qi-yun-xing-jie-guo}
Q1:
``` sql
SELECT cab_type, count(*) FROM trips_mergetree GROUP BY cab_type
```
0.490秒
Q2:
``` sql
SELECT passenger_count, avg(total_amount) FROM trips_mergetree GROUP BY passenger_count
```
1.224秒
Q3:
``` sql
SELECT passenger_count, toYear(pickup_date) AS year, count(*) FROM trips_mergetree GROUP BY passenger_count, year
```
2.104秒
Q4:
``` sql
SELECT passenger_count, toYear(pickup_date) AS year, round(trip_distance) AS distance, count(*)
FROM trips_mergetree
GROUP BY passenger_count, year, distance
ORDER BY year, count(*) DESC
```
3.593秒
我们使用的是如下配置的服务器:
2020-11-27 10:20:57 +00:00
两个`Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz`总共有16个物理内核128GiB RAM8X6TB HDRAID-5
2020-11-27 10:20:57 +00:00
执行时间是取三次运行中最好的值,但是从第二次查询开始,查询就将从文件系统的缓存中读取数据。同时在每次读取和处理后不在进行缓存。
在三台服务器中创建表结构:
在每台服务器中运行:
``` sql
CREATE TABLE default.trips_mergetree_third ( trip_id UInt32, vendor_id Enum8('1' = 1, '2' = 2, 'CMT' = 3, 'VTS' = 4, 'DDS' = 5, 'B02512' = 10, 'B02598' = 11, 'B02617' = 12, 'B02682' = 13, 'B02764' = 14), pickup_date Date, pickup_datetime DateTime, dropoff_date Date, dropoff_datetime DateTime, store_and_fwd_flag UInt8, rate_code_id UInt8, pickup_longitude Float64, pickup_latitude Float64, dropoff_longitude Float64, dropoff_latitude Float64, passenger_count UInt8, trip_distance Float64, fare_amount Float32, extra Float32, mta_tax Float32, tip_amount Float32, tolls_amount Float32, ehail_fee Float32, improvement_surcharge Float32, total_amount Float32, payment_type_ Enum8('UNK' = 0, 'CSH' = 1, 'CRE' = 2, 'NOC' = 3, 'DIS' = 4), trip_type UInt8, pickup FixedString(25), dropoff FixedString(25), cab_type Enum8('yellow' = 1, 'green' = 2, 'uber' = 3), pickup_nyct2010_gid UInt8, pickup_ctlabel Float32, pickup_borocode UInt8, pickup_boroname Enum8('' = 0, 'Manhattan' = 1, 'Bronx' = 2, 'Brooklyn' = 3, 'Queens' = 4, 'Staten Island' = 5), pickup_ct2010 FixedString(6), pickup_boroct2010 FixedString(7), pickup_cdeligibil Enum8(' ' = 0, 'E' = 1, 'I' = 2), pickup_ntacode FixedString(4), pickup_ntaname Enum16('' = 0, 'Airport' = 1, 'Allerton-Pelham Gardens' = 2, 'Annadale-Huguenot-Prince\'s Bay-Eltingville' = 3, 'Arden Heights' = 4, 'Astoria' = 5, 'Auburndale' = 6, 'Baisley Park' = 7, 'Bath Beach' = 8, 'Battery Park City-Lower Manhattan' = 9, 'Bay Ridge' = 10, 'Bayside-Bayside Hills' = 11, 'Bedford' = 12, 'Bedford Park-Fordham North' = 13, 'Bellerose' = 14, 'Belmont' = 15, 'Bensonhurst East' = 16, 'Bensonhurst West' = 17, 'Borough Park' = 18, 'Breezy Point-Belle Harbor-Rockaway Park-Broad Channel' = 19, 'Briarwood-Jamaica Hills' = 20, 'Brighton Beach' = 21, 'Bronxdale' = 22, 'Brooklyn Heights-Cobble Hill' = 23, 'Brownsville' = 24, 'Bushwick North' = 25, 'Bushwick South' = 26, 'Cambria Heights' = 27, 'Canarsie' = 28, 'Carroll Gardens-Columbia Street-Red Hook' = 29, 'Central Harlem North-Polo Grounds' = 30, 'Central Harlem South' = 31, 'Charleston-Richmond Valley-Tottenville' = 32, 'Chinatown' = 33, 'Claremont-Bathgate' = 34, 'Clinton' = 35, 'Clinton Hill' = 36, 'Co-op City' = 37, 'College Point' = 38, 'Corona' = 39, 'Crotona Park East' = 40, 'Crown Heights North' = 41, 'Crown Heights South' = 42, 'Cypress Hills-City Line' = 43, 'DUMBO-Vinegar Hill-Downtown Brooklyn-Boerum Hill' = 44, 'Douglas Manor-Douglaston-Little Neck' = 45, 'Dyker Heights' = 46, 'East Concourse-Concourse Village' = 47, 'East Elmhurst' = 48, 'East Flatbush-Farragut' = 49, 'East Flushing' = 50, 'East Harlem North' = 51, 'East Harlem South' = 52, 'East New York' = 53, 'East New York (Pennsylvania Ave)' = 54, 'East Tremont' = 55, 'East Village' = 56, 'East Williamsburg' = 57, 'Eastchester-Edenwald-Baychester' = 58, 'Elmhurst' = 59, 'Elmhurst-Maspeth' = 60, 'Erasmus' = 61, 'Far Rockaway-Bayswater' = 62, 'Flatbush' = 63, 'Flatlands' = 64, 'Flushing' = 65, 'Fordham South' = 66, 'Forest Hills' = 67, 'Fort Greene' = 68, 'Fresh Meadows-Utopia' = 69, 'Ft. Totten-Bay Terrace-Clearview' = 70, 'Georgetown-Marine Park-Bergen Beach-Mill Basin' = 71, 'Glen Oaks-Floral Park-New Hyde Park' = 72, 'Glendale' = 73, 'Gramercy' = 74, 'Grasmere-Arrochar-Ft. Wadsworth' = 75, 'Gravesend' = 76, 'Great Kills' = 77, 'Greenpoint' = 78, 'Grymes Hill-Clifton-Fox Hills' = 79, 'Hamilton Heights' = 80, 'Hammels-Arverne-Edgemere' = 81, 'Highbridge' = 82, 'Hollis' = 83, 'Homecrest' = 84, 'Hudson Yards-Chelsea-Flatiron-Union Square' = 85, 'Hunters Point-Sunnyside-West Maspeth' = 86, 'Hunts Point' = 87, 'Jackson Heights' = 88, 'Jamaica' = 89, 'Jamaica Estates-Holliswood' = 90, 'Kensington-Ocean Parkway' = 91, 'Kew Gardens' = 92, 'Kew Gardens Hills' = 93, 'Kingsbridge Heights' = 94, 'Laurelton' = 95, 'Lenox Hill-Roosevelt Island' = 96, 'Lincoln Square' = 97, 'Lindenwood-Howard Beach' = 98, 'Longwood' = 99, 'Lower East Side' = 100, 'Madison' = 101, 'Manhattanville' = 102, 'Marble Hill-Inwood' = 103, 'Mariner\'s Harbor-Arlington-Port Ivory-Graniteville' = 104, 'Maspeth' = 105, 'Melrose South-Mott Haven North' =
```
在之前的服务器中运行:
``` sql
CREATE TABLE trips_mergetree_x3 AS trips_mergetree_third ENGINE = Distributed(perftest, default, trips_mergetree_third, rand())
```
运行如下查询重新分布数据:
``` sql
INSERT INTO trips_mergetree_x3 SELECT * FROM trips_mergetree
```
这个查询需要运行2454秒。
在三台服务器集群中运行的结果:
2020-11-27 10:20:57 +00:00
Q1: 0.212秒.
Q20.438秒。
Q30.733秒。
2020-11-27 10:20:57 +00:00
Q4: 1.241秒.
2020-11-27 10:20:57 +00:00
这并不奇怪,因为查询是线性扩展的。
我们同时在140台服务器的集群中运行的结果
Q10.028秒。
Q20.043秒。
Q30.051秒。
Q40.072秒。
在这种情况下,查询处理时间首先由网络延迟确定。
## 总结 {#zong-jie}
| 服务器 | Q1 | Q2 | Q3 | Q4 |
|--------|-------|-------|-------|-------|
| 1 | 0.490 | 1.224 | 2.104 | 3.593 |
| 3 | 0.212 | 0.438 | 0.733 | 1.241 |
| 140 | 0.028 | 0.043 | 0.051 | 0.072 |