ClickHouse/src/Functions/geometryConverters.h

335 lines
9.5 KiB
C++
Raw Normal View History

2020-06-07 13:42:09 +00:00
#pragma once
2020-06-07 12:33:49 +00:00
#include <Core/Types.h>
2020-06-07 14:28:46 +00:00
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnTuple.h>
2021-02-16 19:50:34 +00:00
#include <Common/NaNUtils.h>
2020-06-07 14:28:46 +00:00
#include <DataTypes/DataTypeArray.h>
#include <DataTypes/IDataType.h>
#include <DataTypes/DataTypeCustomGeo.h>
2021-03-03 16:47:10 +00:00
#include <Functions/geometryTypes.h>
2020-06-07 16:47:56 +00:00
#include <IO/WriteHelpers.h>
#include <Interpreters/castColumn.h>
2020-06-07 14:28:46 +00:00
2021-01-19 17:16:10 +00:00
namespace DB
{
2020-06-07 12:33:49 +00:00
2020-06-07 14:28:46 +00:00
namespace ErrorCodes
{
2020-06-14 17:04:10 +00:00
extern const int BAD_ARGUMENTS;
2021-02-26 15:29:26 +00:00
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
2020-06-07 14:28:46 +00:00
}
2020-06-07 12:33:49 +00:00
2021-01-18 23:51:34 +00:00
/**
2021-02-26 15:29:26 +00:00
* Class which takes converts Column with type Tuple(Float64, Float64) to a vector of boost point type.
2021-02-26 12:25:28 +00:00
* They are (x,y) in case of cartesian coordinated and (lon,lat) in case of Spherical.
2021-01-18 23:51:34 +00:00
*/
2021-02-19 18:09:38 +00:00
template <typename Point>
2021-02-26 15:29:26 +00:00
struct ColumnToPointsConverter
2020-06-07 13:42:09 +00:00
{
2021-02-26 15:29:26 +00:00
static std::vector<Point> convert(ColumnPtr col)
2020-06-07 14:28:46 +00:00
{
2021-02-26 15:29:26 +00:00
const auto * tuple = typeid_cast<const ColumnTuple *>(col.get());
const auto & tuple_columns = tuple->getColumns();
2020-06-07 14:28:46 +00:00
2021-02-26 15:29:26 +00:00
const auto * x_data = typeid_cast<const ColumnFloat64 *>(tuple_columns[0].get());
const auto * y_data = typeid_cast<const ColumnFloat64 *>(tuple_columns[1].get());
2021-01-18 23:51:34 +00:00
2021-02-26 15:29:26 +00:00
const auto * first_container = x_data->getData().data();
const auto * second_container = y_data->getData().data();
2021-02-26 15:29:26 +00:00
std::vector<Point> answer(col->size());
2020-06-07 13:42:09 +00:00
2021-02-26 15:29:26 +00:00
for (size_t i = 0; i < col->size(); ++i)
{
const Float64 first = first_container[i];
const Float64 second = second_container[i];
2021-02-18 19:51:19 +00:00
2021-02-26 15:29:26 +00:00
if (isNaN(first) || isNaN(second))
throw Exception("Point's component must not be NaN", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
2020-06-07 14:28:46 +00:00
2021-02-26 15:29:26 +00:00
if (isinf(first) || isinf(second))
throw Exception("Point's component must not be infinite", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
2020-06-07 14:28:46 +00:00
2021-02-26 15:29:26 +00:00
answer[i] = Point(first, second);
}
return answer;
}
2020-06-07 14:28:46 +00:00
};
2021-02-26 15:29:26 +00:00
template <typename Point>
struct ColumnToRingsConverter
2020-06-07 14:58:34 +00:00
{
2021-02-26 15:29:26 +00:00
static std::vector<Ring<Point>> convert(ColumnPtr col)
2020-06-07 14:58:34 +00:00
{
2021-02-26 15:29:26 +00:00
const IColumn::Offsets & offsets = typeid_cast<const ColumnArray &>(*col).getOffsets();
size_t prev_offset = 0;
std::vector<Ring<Point>> answer;
answer.reserve(offsets.size());
auto tmp = ColumnToPointsConverter<Point>::convert(typeid_cast<const ColumnArray &>(*col).getDataPtr());
for (size_t offset : offsets)
{
answer.emplace_back(tmp.begin() + prev_offset, tmp.begin() + offset);
prev_offset = offset;
}
return answer;
2020-06-07 14:58:34 +00:00
}
2021-02-26 15:29:26 +00:00
};
2020-06-07 14:58:34 +00:00
2021-02-19 18:09:38 +00:00
2021-02-26 15:29:26 +00:00
template <typename Point>
struct ColumnToPolygonsConverter
{
static std::vector<Polygon<Point>> convert(ColumnPtr col)
{
const IColumn::Offsets & offsets = typeid_cast<const ColumnArray &>(*col).getOffsets();
std::vector<Polygon<Point>> answer(offsets.size());
auto all_rings = ColumnToRingsConverter<Point>::convert(typeid_cast<const ColumnArray &>(*col).getDataPtr());
size_t prev_offset = 0;
for (size_t iter = 0; iter < offsets.size(); ++iter)
{
const auto current_array_size = offsets[iter] - prev_offset;
answer[iter].outer() = std::move(all_rings[prev_offset]);
answer[iter].inners().reserve(current_array_size);
for (size_t inner_holes = prev_offset + 1; inner_holes < offsets[iter]; ++inner_holes)
answer[iter].inners().emplace_back(std::move(all_rings[inner_holes]));
prev_offset = offsets[iter];
}
2021-02-19 18:09:38 +00:00
2021-02-26 15:29:26 +00:00
return answer;
}
2020-06-07 14:58:34 +00:00
};
2021-02-26 15:29:26 +00:00
template <typename Point>
struct ColumnToMultiPolygonsConverter
{
static std::vector<MultiPolygon<Point>> convert(ColumnPtr col)
{
const IColumn::Offsets & offsets = typeid_cast<const ColumnArray &>(*col).getOffsets();
size_t prev_offset = 0;
std::vector<MultiPolygon<Point>> answer(offsets.size());
2020-06-07 14:58:34 +00:00
2021-02-26 15:29:26 +00:00
auto all_polygons = ColumnToPolygonsConverter<Point>::convert(typeid_cast<const ColumnArray &>(*col).getDataPtr());
2020-06-07 14:58:34 +00:00
2021-02-26 15:29:26 +00:00
for (size_t iter = 0; iter < offsets.size(); ++iter)
{
for (size_t polygon_iter = prev_offset; polygon_iter < offsets[iter]; ++polygon_iter)
answer[iter].emplace_back(std::move(all_polygons[polygon_iter]));
prev_offset = offsets[iter];
}
2021-01-18 23:51:34 +00:00
2021-02-26 15:29:26 +00:00
return answer;
}
};
2021-02-15 19:22:13 +00:00
2020-06-07 16:04:35 +00:00
2021-02-26 12:25:28 +00:00
/// To serialize Spherical or Cartesian point (a pair of numbers in both cases).
2021-01-19 14:52:53 +00:00
template <typename Point>
class PointSerializer
2020-06-14 17:04:10 +00:00
{
2020-06-14 17:37:15 +00:00
public:
PointSerializer()
2021-01-19 14:52:53 +00:00
: first(ColumnFloat64::create())
, second(ColumnFloat64::create())
, first_container(first->getData())
, second_container(second->getData())
2020-06-14 17:04:10 +00:00
{}
explicit PointSerializer(size_t n)
2021-01-19 14:52:53 +00:00
: first(ColumnFloat64::create(n))
, second(ColumnFloat64::create(n))
, first_container(first->getData())
, second_container(second->getData())
2020-06-14 17:04:10 +00:00
{}
void add(const Point & point)
2020-06-14 17:04:10 +00:00
{
first_container.emplace_back(point.template get<0>());
second_container.emplace_back(point.template get<1>());
2020-06-14 17:04:10 +00:00
}
ColumnPtr finalize()
{
Columns columns(2);
2021-01-19 14:52:53 +00:00
columns[0] = std::move(first);
columns[1] = std::move(second);
2020-06-14 17:04:10 +00:00
return ColumnTuple::create(columns);
}
2020-06-14 17:37:15 +00:00
private:
2021-01-19 14:52:53 +00:00
ColumnFloat64::MutablePtr first;
ColumnFloat64::MutablePtr second;
ColumnFloat64::Container & first_container;
ColumnFloat64::Container & second_container;
2020-06-14 17:37:15 +00:00
};
2021-02-20 13:59:37 +00:00
/// Serialize Point, Ring as Ring
2021-01-19 14:52:53 +00:00
template <typename Point>
class RingSerializer
2020-06-14 17:37:15 +00:00
{
public:
RingSerializer()
2020-06-14 17:37:15 +00:00
: offsets(ColumnUInt64::create())
{}
explicit RingSerializer(size_t n)
2020-06-14 17:37:15 +00:00
: offsets(ColumnUInt64::create(n))
{}
void add(const Ring<Point> & ring)
2020-06-14 17:37:15 +00:00
{
size += ring.size();
offsets->insertValue(size);
for (const auto & point : ring)
point_serializer.add(point);
2020-06-14 17:37:15 +00:00
}
ColumnPtr finalize()
{
2021-02-11 20:37:05 +00:00
return ColumnArray::create(point_serializer.finalize(), std::move(offsets));
2020-06-14 17:37:15 +00:00
}
private:
2020-06-21 15:18:09 +00:00
size_t size = 0;
PointSerializer<Point> point_serializer;
2020-06-14 17:37:15 +00:00
ColumnUInt64::MutablePtr offsets;
};
2021-02-20 13:59:37 +00:00
/// Serialize Point, Ring, Polygon as Polygon
2021-01-19 14:52:53 +00:00
template <typename Point>
class PolygonSerializer
2020-06-14 17:37:15 +00:00
{
public:
PolygonSerializer()
2020-06-14 17:37:15 +00:00
: offsets(ColumnUInt64::create())
{}
explicit PolygonSerializer(size_t n)
2020-06-14 17:37:15 +00:00
: offsets(ColumnUInt64::create(n))
{}
void add(const Ring<Point> & ring)
2020-06-14 17:37:15 +00:00
{
size++;
offsets->insertValue(size);
ring_serializer.add(ring);
2020-06-14 17:37:15 +00:00
}
void add(const Polygon<Point> & polygon)
2020-06-14 17:37:15 +00:00
{
2021-02-26 15:29:26 +00:00
/// Outer ring + all inner rings (holes).
2020-06-14 17:37:15 +00:00
size += 1 + polygon.inners().size();
offsets->insertValue(size);
ring_serializer.add(polygon.outer());
2020-06-14 17:37:15 +00:00
for (const auto & ring : polygon.inners())
ring_serializer.add(ring);
2020-06-14 17:37:15 +00:00
}
ColumnPtr finalize()
{
2021-02-11 20:37:05 +00:00
return ColumnArray::create(ring_serializer.finalize(), std::move(offsets));
2020-06-14 17:37:15 +00:00
}
private:
2020-06-21 15:18:09 +00:00
size_t size = 0;
RingSerializer<Point> ring_serializer;
2020-06-14 17:37:15 +00:00
ColumnUInt64::MutablePtr offsets;
};
2021-02-20 13:59:37 +00:00
/// Serialize Point, Ring, Polygon, MultiPolygon as MultiPolygon
2021-01-19 14:52:53 +00:00
template <typename Point>
class MultiPolygonSerializer
2020-06-14 17:37:15 +00:00
{
public:
MultiPolygonSerializer()
2020-06-14 17:37:15 +00:00
: offsets(ColumnUInt64::create())
{}
explicit MultiPolygonSerializer(size_t n)
2020-06-14 17:37:15 +00:00
: offsets(ColumnUInt64::create(n))
{}
void add(const Ring<Point> & ring)
2020-06-14 17:37:15 +00:00
{
size++;
offsets->insertValue(size);
polygon_serializer.add(ring);
2020-06-14 17:37:15 +00:00
}
void add(const Polygon<Point> & polygon)
2020-06-14 17:37:15 +00:00
{
size++;
offsets->insertValue(size);
polygon_serializer.add(polygon);
2020-06-14 17:37:15 +00:00
}
void add(const MultiPolygon<Point> & multi_polygon)
2020-06-14 17:37:15 +00:00
{
size += multi_polygon.size();
2020-06-14 17:37:15 +00:00
offsets->insertValue(size);
for (const auto & polygon : multi_polygon)
{
polygon_serializer.add(polygon);
2020-06-14 17:37:15 +00:00
}
}
ColumnPtr finalize()
{
2021-02-11 20:37:05 +00:00
return ColumnArray::create(polygon_serializer.finalize(), std::move(offsets));
2020-06-14 17:37:15 +00:00
}
private:
2020-06-21 15:18:09 +00:00
size_t size = 0;
PolygonSerializer<Point> polygon_serializer;
2020-06-14 17:37:15 +00:00
ColumnUInt64::MutablePtr offsets;
};
2020-06-14 17:04:10 +00:00
2021-02-19 22:48:59 +00:00
template <typename PType>
2021-02-20 13:59:37 +00:00
struct ConverterType
2021-02-19 22:48:59 +00:00
{
using Type = PType;
};
template <typename Point, typename F>
static void callOnGeometryDataType(DataTypePtr type, F && f)
2020-06-14 17:04:10 +00:00
{
2021-02-20 13:59:37 +00:00
/// There is no Point type, because for most of geometry functions it is useless.
2021-02-20 17:44:18 +00:00
if (DataTypeCustomPointSerialization::nestedDataType()->equals(*type))
2021-02-26 15:29:26 +00:00
return f(ConverterType<ColumnToPointsConverter<Point>>());
2021-02-20 17:44:18 +00:00
else if (DataTypeCustomRingSerialization::nestedDataType()->equals(*type))
2021-02-26 15:29:26 +00:00
return f(ConverterType<ColumnToRingsConverter<Point>>());
2021-02-20 17:44:18 +00:00
else if (DataTypeCustomPolygonSerialization::nestedDataType()->equals(*type))
2021-02-26 15:29:26 +00:00
return f(ConverterType<ColumnToPolygonsConverter<Point>>());
2021-02-20 17:44:18 +00:00
else if (DataTypeCustomMultiPolygonSerialization::nestedDataType()->equals(*type))
2021-02-26 15:29:26 +00:00
return f(ConverterType<ColumnToMultiPolygonsConverter<Point>>());
throw Exception(fmt::format("Unknown geometry type {}", type->getName()), ErrorCodes::BAD_ARGUMENTS);
}
2021-01-19 14:52:53 +00:00
2020-06-14 17:04:10 +00:00
template <typename Point, typename F>
static void callOnTwoGeometryDataTypes(DataTypePtr left_type, DataTypePtr right_type, F && func)
{
return callOnGeometryDataType<Point>(left_type, [&](const auto & left_types)
{
2021-02-20 13:59:37 +00:00
using LeftConverterType = std::decay_t<decltype(left_types)>;
2021-02-15 19:22:13 +00:00
return callOnGeometryDataType<Point>(right_type, [&](const auto & right_types)
{
2021-02-20 13:59:37 +00:00
using RightConverterType = std::decay_t<decltype(right_types)>;
2021-02-15 19:22:13 +00:00
2021-02-20 13:59:37 +00:00
return func(LeftConverterType(), RightConverterType());
});
});
}
2021-02-19 18:09:38 +00:00
2020-06-07 12:33:49 +00:00
}