ClickHouse/docs/en/sql-reference/aggregate-functions/reference/exponentialmovingaverage.md

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

206 lines
12 KiB
Markdown
Raw Normal View History

2021-11-14 13:52:07 +00:00
---
2022-08-28 14:53:34 +00:00
slug: /en/sql-reference/aggregate-functions/reference/exponentialmovingaverage
sidebar_position: 108
2022-12-08 16:40:27 +00:00
sidebar_title: exponentialMovingAverage
2021-11-14 13:52:07 +00:00
---
2022-06-02 10:55:18 +00:00
## exponentialMovingAverage
2022-06-02 10:55:18 +00:00
Сalculates the exponential moving average of values for the determined time.
**Syntax**
```sql
2023-03-06 19:56:21 +00:00
exponentialMovingAverage(x)(value, timeunit)
```
2023-03-06 19:56:21 +00:00
Each `value` corresponds to the determinate `timeunit`. The half-life `x` is the time lag at which the exponential weights decay by one-half. The function returns a weighted average: the older the time point, the less weight the corresponding value is considered to be.
**Arguments**
2021-11-18 18:09:26 +00:00
- `value` — Value. [Integer](../../../sql-reference/data-types/int-uint.md), [Float](../../../sql-reference/data-types/float.md) or [Decimal](../../../sql-reference/data-types/decimal.md).
2023-03-18 02:45:43 +00:00
- `timeunit` — Timeunit. [Integer](../../../sql-reference/data-types/int-uint.md), [Float](../../../sql-reference/data-types/float.md) or [Decimal](../../../sql-reference/data-types/decimal.md). Timeunit is not timestamp (seconds), it's -- an index of the time interval. Can be calculated using [intDiv](../../functions/arithmetic-functions.md#intdiva-b).
**Parameters**
2021-11-18 18:09:26 +00:00
- `x` — Half-life period. [Integer](../../../sql-reference/data-types/int-uint.md), [Float](../../../sql-reference/data-types/float.md) or [Decimal](../../../sql-reference/data-types/decimal.md).
**Returned values**
2021-11-23 18:50:02 +00:00
- Returnes an [exponentially smoothed moving average](https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average) of the values for the past `x` time at the latest point of time.
Type: [Float64](../../../sql-reference/data-types/float.md#float32-float64).
**Examples**
Input table:
``` text
┌──temperature─┬─timestamp──┐
│ 95 │ 1 │
│ 95 │ 2 │
│ 95 │ 3 │
│ 96 │ 4 │
│ 96 │ 5 │
│ 96 │ 6 │
│ 96 │ 7 │
│ 97 │ 8 │
│ 97 │ 9 │
│ 97 │ 10 │
│ 97 │ 11 │
│ 98 │ 12 │
│ 98 │ 13 │
│ 98 │ 14 │
│ 98 │ 15 │
│ 99 │ 16 │
│ 99 │ 17 │
│ 99 │ 18 │
│ 100 │ 19 │
│ 100 │ 20 │
└──────────────┴────────────┘
```
2022-06-02 10:55:18 +00:00
Query:
```sql
SELECT exponentialMovingAverage(5)(temperature, timestamp);
```
Result:
``` text
┌──exponentialMovingAverage(5)(temperature, timestamp)──┐
│ 92.25779635374204 │
└───────────────────────────────────────────────────────┘
2021-11-18 17:42:41 +00:00
```
2022-06-02 10:55:18 +00:00
Query:
2021-11-18 17:42:41 +00:00
```sql
SELECT
value,
time,
round(exp_smooth, 3),
bar(exp_smooth, 0, 1, 50) AS bar
FROM
(
SELECT
(number = 0) OR (number >= 25) AS value,
number AS time,
exponentialMovingAverage(10)(value, time) OVER (Rows BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS exp_smooth
FROM numbers(50)
)
```
Result:
``` text
┌─value─┬─time─┬─round(exp_smooth, 3)─┬─bar────────────────────────────────────────┐
│ 1 │ 0 │ 0.067 │ ███▎ │
│ 0 │ 1 │ 0.062 │ ███ │
│ 0 │ 2 │ 0.058 │ ██▊ │
│ 0 │ 3 │ 0.054 │ ██▋ │
│ 0 │ 4 │ 0.051 │ ██▌ │
│ 0 │ 5 │ 0.047 │ ██▎ │
│ 0 │ 6 │ 0.044 │ ██▏ │
│ 0 │ 7 │ 0.041 │ ██ │
│ 0 │ 8 │ 0.038 │ █▊ │
│ 0 │ 9 │ 0.036 │ █▋ │
│ 0 │ 10 │ 0.033 │ █▋ │
│ 0 │ 11 │ 0.031 │ █▌ │
│ 0 │ 12 │ 0.029 │ █▍ │
│ 0 │ 13 │ 0.027 │ █▎ │
│ 0 │ 14 │ 0.025 │ █▎ │
│ 0 │ 15 │ 0.024 │ █▏ │
│ 0 │ 16 │ 0.022 │ █ │
│ 0 │ 17 │ 0.021 │ █ │
│ 0 │ 18 │ 0.019 │ ▊ │
│ 0 │ 19 │ 0.018 │ ▊ │
│ 0 │ 20 │ 0.017 │ ▋ │
│ 0 │ 21 │ 0.016 │ ▋ │
│ 0 │ 22 │ 0.015 │ ▋ │
│ 0 │ 23 │ 0.014 │ ▋ │
│ 0 │ 24 │ 0.013 │ ▋ │
│ 1 │ 25 │ 0.079 │ ███▊ │
│ 1 │ 26 │ 0.14 │ ███████ │
│ 1 │ 27 │ 0.198 │ █████████▊ │
│ 1 │ 28 │ 0.252 │ ████████████▌ │
│ 1 │ 29 │ 0.302 │ ███████████████ │
│ 1 │ 30 │ 0.349 │ █████████████████▍ │
│ 1 │ 31 │ 0.392 │ ███████████████████▌ │
│ 1 │ 32 │ 0.433 │ █████████████████████▋ │
│ 1 │ 33 │ 0.471 │ ███████████████████████▌ │
│ 1 │ 34 │ 0.506 │ █████████████████████████▎ │
│ 1 │ 35 │ 0.539 │ ██████████████████████████▊ │
│ 1 │ 36 │ 0.57 │ ████████████████████████████▌ │
│ 1 │ 37 │ 0.599 │ █████████████████████████████▊ │
│ 1 │ 38 │ 0.626 │ ███████████████████████████████▎ │
│ 1 │ 39 │ 0.651 │ ████████████████████████████████▌ │
│ 1 │ 40 │ 0.674 │ █████████████████████████████████▋ │
│ 1 │ 41 │ 0.696 │ ██████████████████████████████████▋ │
│ 1 │ 42 │ 0.716 │ ███████████████████████████████████▋ │
│ 1 │ 43 │ 0.735 │ ████████████████████████████████████▋ │
│ 1 │ 44 │ 0.753 │ █████████████████████████████████████▋ │
│ 1 │ 45 │ 0.77 │ ██████████████████████████████████████▍ │
│ 1 │ 46 │ 0.785 │ ███████████████████████████████████████▎ │
│ 1 │ 47 │ 0.8 │ ███████████████████████████████████████▊ │
│ 1 │ 48 │ 0.813 │ ████████████████████████████████████████▋ │
│ 1 │ 49 │ 0.825 │ █████████████████████████████████████████▎│
└───────┴──────┴──────────────────────┴────────────────────────────────────────────┘
2021-11-18 18:09:26 +00:00
```
2023-03-06 19:56:21 +00:00
```sql
CREATE TABLE data
ENGINE = Memory AS
SELECT
10 AS value,
toDateTime('2020-01-01') + (3600 * number) AS time
FROM numbers_mt(10);
2023-03-06 20:04:36 +00:00
-- Calculate timeunit using intDiv
2023-03-06 19:56:21 +00:00
SELECT
value,
time,
2023-03-06 20:04:36 +00:00
exponentialMovingAverage(1)(value, intDiv(toUInt32(time), 3600)) OVER (ORDER BY time ASC) AS res,
intDiv(toUInt32(time), 3600) AS timeunit
2023-03-06 19:56:21 +00:00
FROM data
2023-03-06 20:04:36 +00:00
ORDER BY time ASC;
┌─value─┬────────────────time─┬─────────res─┬─timeunit─┐
│ 10 │ 2020-01-01 00:00:00 │ 5 │ 438288 │
│ 10 │ 2020-01-01 01:00:00 │ 7.5 │ 438289 │
│ 10 │ 2020-01-01 02:00:00 │ 8.75 │ 438290 │
│ 10 │ 2020-01-01 03:00:00 │ 9.375 │ 438291 │
│ 10 │ 2020-01-01 04:00:00 │ 9.6875 │ 438292 │
│ 10 │ 2020-01-01 05:00:00 │ 9.84375 │ 438293 │
│ 10 │ 2020-01-01 06:00:00 │ 9.921875 │ 438294 │
│ 10 │ 2020-01-01 07:00:00 │ 9.9609375 │ 438295 │
│ 10 │ 2020-01-01 08:00:00 │ 9.98046875 │ 438296 │
│ 10 │ 2020-01-01 09:00:00 │ 9.990234375 │ 438297 │
└───────┴─────────────────────┴─────────────┴──────────┘
-- Calculate timeunit using toRelativeHourNum
2023-03-06 19:59:24 +00:00
SELECT
value,
time,
2023-03-06 20:04:36 +00:00
exponentialMovingAverage(1)(value, toRelativeHourNum(time)) OVER (ORDER BY time ASC) AS res,
toRelativeHourNum(time) AS timeunit
2023-03-06 19:59:24 +00:00
FROM data
2023-03-06 20:04:36 +00:00
ORDER BY time ASC;
┌─value─┬────────────────time─┬─────────res─┬─timeunit─┐
│ 10 │ 2020-01-01 00:00:00 │ 5 │ 438288 │
│ 10 │ 2020-01-01 01:00:00 │ 7.5 │ 438289 │
│ 10 │ 2020-01-01 02:00:00 │ 8.75 │ 438290 │
│ 10 │ 2020-01-01 03:00:00 │ 9.375 │ 438291 │
│ 10 │ 2020-01-01 04:00:00 │ 9.6875 │ 438292 │
│ 10 │ 2020-01-01 05:00:00 │ 9.84375 │ 438293 │
│ 10 │ 2020-01-01 06:00:00 │ 9.921875 │ 438294 │
│ 10 │ 2020-01-01 07:00:00 │ 9.9609375 │ 438295 │
│ 10 │ 2020-01-01 08:00:00 │ 9.98046875 │ 438296 │
│ 10 │ 2020-01-01 09:00:00 │ 9.990234375 │ 438297 │
└───────┴─────────────────────┴─────────────┴──────────┘
2023-03-06 19:56:21 +00:00
```