2021-02-07 18:40:55 +00:00
|
|
|
#include <Functions/FunctionsTextClassification.h>
|
|
|
|
#include <Functions/FunctionFactory.h>
|
|
|
|
#include <Functions/FunctionsHashing.h>
|
|
|
|
#include <Common/HashTable/ClearableHashMap.h>
|
|
|
|
#include <Common/HashTable/Hash.h>
|
|
|
|
#include <Common/UTF8Helpers.h>
|
|
|
|
|
|
|
|
#include <Core/Defines.h>
|
|
|
|
|
|
|
|
#include <common/unaligned.h>
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <climits>
|
|
|
|
#include <cstring>
|
|
|
|
#include <limits>
|
|
|
|
#include <map>
|
|
|
|
#include <memory>
|
|
|
|
#include <utility>
|
|
|
|
|
|
|
|
#ifdef __SSE4_2__
|
|
|
|
# include <nmmintrin.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace DB
|
|
|
|
{
|
|
|
|
template <size_t N>
|
|
|
|
struct TextClassificationImpl
|
|
|
|
{
|
|
|
|
|
|
|
|
using ResultType = Float32;
|
|
|
|
using CodePoint = UInt8;
|
|
|
|
/// map_size for ngram count.
|
|
|
|
static constexpr size_t map_size = 1u << 16;
|
|
|
|
|
|
|
|
/// If the data size is bigger than this, behaviour is unspecified for this function.
|
|
|
|
static constexpr size_t max_string_size = 1u << 15;
|
|
|
|
|
|
|
|
/// Default padding to read safely.
|
|
|
|
static constexpr size_t default_padding = 16;
|
|
|
|
|
|
|
|
/// Max codepoints to store at once. 16 is for batching usage and PODArray has this padding.
|
|
|
|
static constexpr size_t simultaneously_codepoints_num = default_padding + N - 1;
|
|
|
|
|
|
|
|
/** map_size of this fits mostly in L2 cache all the time.
|
|
|
|
* Actually use UInt16 as addings and subtractions do not UB overflow. But think of it as a signed
|
|
|
|
* integer array.
|
|
|
|
*/
|
|
|
|
using NgramCount = UInt16;
|
|
|
|
|
|
|
|
static ALWAYS_INLINE size_t readCodePoints(CodePoint * code_points, const char *& pos, const char * end)
|
|
|
|
{
|
|
|
|
constexpr size_t padding_offset = default_padding - N + 1;
|
|
|
|
memcpy(code_points, code_points + padding_offset, roundUpToPowerOfTwoOrZero(N - 1) * sizeof(CodePoint));
|
|
|
|
memcpy(code_points + (N - 1), pos, default_padding * sizeof(CodePoint));
|
|
|
|
pos += padding_offset;
|
|
|
|
if (pos > end)
|
|
|
|
return default_padding - (pos - end);
|
|
|
|
return default_padding;
|
|
|
|
}
|
|
|
|
|
|
|
|
static ALWAYS_INLINE inline size_t calculateStats(
|
|
|
|
const char * data,
|
|
|
|
const size_t size,
|
|
|
|
NgramCount * ngram_stats,
|
|
|
|
size_t (*read_code_points)(CodePoint *, const char *&, const char *),
|
|
|
|
NgramCount * ngram_storage)
|
|
|
|
{
|
|
|
|
const char * start = data;
|
|
|
|
const char * end = data + size;
|
|
|
|
CodePoint cp[simultaneously_codepoints_num] = {};
|
|
|
|
/// read_code_points returns the position of cp where it stopped reading codepoints.
|
|
|
|
size_t found = read_code_points(cp, start, end);
|
|
|
|
/// We need to start for the first time here, because first N - 1 codepoints mean nothing.
|
|
|
|
size_t i = N - 1;
|
|
|
|
size_t len = 0;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
for (; i + N <= found; ++i)
|
|
|
|
{
|
|
|
|
UInt16 hash = 0;
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
hash <<= 8;
|
|
|
|
hash += *(cp + i + j);
|
|
|
|
}
|
|
|
|
if (ngram_stats[hash] == 0) {
|
|
|
|
ngram_storage[len] = hash;
|
|
|
|
++len;
|
|
|
|
}
|
|
|
|
++ngram_stats[hash];
|
|
|
|
}
|
|
|
|
i = 0;
|
|
|
|
} while (start < end && (found = read_code_points(cp, start, end)));
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void constant(std::string data, Float32 & res)
|
|
|
|
{
|
|
|
|
std::unique_ptr<NgramCount[]> common_stats{new NgramCount[map_size]{}}; // frequency of N-grams
|
|
|
|
std::unique_ptr<NgramCount[]> ngram_storage{new NgramCount[map_size]{}}; // list of N-grams
|
|
|
|
res = calculateStats(data.data(), data.size(), common_stats.get(), readCodePoints, ngram_storage.get()); // count of N-grams
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vector(
|
|
|
|
const ColumnString::Chars & data,
|
|
|
|
const ColumnString::Offsets & offsets,
|
|
|
|
PaddedPODArray<Float32> & res)
|
|
|
|
{
|
|
|
|
const size_t offsets_size = offsets.size();
|
|
|
|
size_t prev_offset = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < offsets_size; ++i)
|
|
|
|
{
|
|
|
|
const char * haystack = reinterpret_cast<const char *>(&data[prev_offset]);
|
2021-02-07 19:46:33 +00:00
|
|
|
std::string str = haystack;
|
|
|
|
|
|
|
|
std::unique_ptr<NgramCount[]> common_stats{new NgramCount[map_size]{}}; // frequency of N-grams
|
|
|
|
std::unique_ptr<NgramCount[]> ngram_storage{new NgramCount[map_size]{}}; // list of N-grams
|
|
|
|
|
|
|
|
res[i] = calculateStats(str.data(), str.size(), common_stats.get(), readCodePoints, ngram_storage.get()); // count of N-grams
|
2021-02-07 18:40:55 +00:00
|
|
|
prev_offset = offsets[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct NameBiGramcount
|
|
|
|
{
|
|
|
|
static constexpr auto name = "biGramcount";
|
|
|
|
};
|
2021-02-07 19:46:33 +00:00
|
|
|
|
2021-02-07 18:40:55 +00:00
|
|
|
struct NameTriGramcount
|
|
|
|
{
|
|
|
|
static constexpr auto name = "triGramcount";
|
|
|
|
};
|
2021-02-07 19:46:33 +00:00
|
|
|
|
2021-02-07 18:40:55 +00:00
|
|
|
|
|
|
|
using FunctionBiGramcount = FunctionsTextClassification<TextClassificationImpl<2>, NameBiGramcount>;
|
2021-02-07 19:14:54 +00:00
|
|
|
using FunctionTriGramcount = FunctionsTextClassification<TextClassificationImpl<3>, NameTriGramcount>;
|
2021-02-07 18:40:55 +00:00
|
|
|
|
|
|
|
void registerFunctionsTextClassification(FunctionFactory & factory)
|
|
|
|
{
|
|
|
|
factory.registerFunction<FunctionBiGramcount>();
|
2021-02-07 19:14:54 +00:00
|
|
|
factory.registerFunction<FunctionTriGramcount>();
|
2021-02-07 18:40:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Created by sergey on 04.02.2021.
|
|
|
|
//
|