ClickHouse/src/Common/ExponentiallySmoothedCounter.h

104 lines
3.5 KiB
C++
Raw Normal View History

2021-09-12 05:28:57 +00:00
#pragma once
#include <cmath>
#include <limits>
namespace DB
{
/** https://en.wikipedia.org/wiki/Exponential_smoothing
*
* Exponentially smoothed average over time is weighted average with weight proportional to negative exponent of the time passed.
* For example, the last value is taken with weight 1/2, the value one second ago with weight 1/4, two seconds ago - 1/8, etc.
2021-09-12 06:09:57 +00:00
* It can be understood as an average over sliding window, but with different kernel.
2021-09-12 05:28:57 +00:00
*
2021-09-12 06:10:31 +00:00
* As an advantage, it is easy to update. Instead of collecting values and calculating a series of x1 / 2 + x2 / 4 + x3 / 8...
2021-09-12 06:11:23 +00:00
* just calculate x_old * weight + x_new * (1 - weight), where weight is an exponent of (negative) time passed.
2021-09-12 05:28:57 +00:00
*
* It is often used for resource usage metrics. For example, "load average" in Linux is exponentially smoothed moving average.
* We can use exponentially smoothed counters in query scheduler.
*
* It is possible to update the value with values in monotonic order of time.
* If it is updated with non-monotonic order, the calculation becomes non-deterministic.
*/
template <typename Derived>
struct ExponentiallySmoothedBase
2021-09-12 05:28:57 +00:00
{
double value = 0;
2021-09-12 12:58:30 +00:00
/// So the first update will have weight near 1. Cannot use -inf because subtraction will lead to nan.
double update_time = std::numeric_limits<double>::lowest();
2021-09-12 05:28:57 +00:00
ExponentiallySmoothedBase()
2021-09-12 05:28:57 +00:00
{
}
ExponentiallySmoothedBase(double current_value, double current_time)
2021-09-12 05:28:57 +00:00
: value(current_value), update_time(current_time)
{
}
double decay(double current_time, double prev_time, double half_decay_time) const
{
return exp2((prev_time - current_time) / half_decay_time);
}
double get(double current_time, double half_decay_time) const
{
return value * decay(current_time, update_time, half_decay_time);
}
void merge(const ExponentiallySmoothedBase & other, double half_decay_time)
{
static_cast<Derived *>(this)->add(other.value, other.update_time, half_decay_time);
}
bool less(const ExponentiallySmoothedBase & other, double half_decay_time) const
{
return get(other.update_time, half_decay_time) < other.value;
}
};
struct ExponentiallySmoothedAverage : ExponentiallySmoothedBase<ExponentiallySmoothedAverage>
{
2021-09-12 05:28:57 +00:00
void add(double new_value, double current_time, double half_decay_time)
{
if (current_time > update_time)
{
/// Add newer value.
double old_value_weight = decay(current_time, update_time, half_decay_time);
value = value * old_value_weight + new_value * (1 - old_value_weight);
update_time = current_time;
}
else
{
/// Add older value.
double new_value_weight = decay(update_time, current_time, half_decay_time);
value = value * (1 - new_value_weight) + new_value * new_value_weight;
}
}
};
2021-09-12 05:28:57 +00:00
struct ExponentiallySmoothedSum : ExponentiallySmoothedBase<ExponentiallySmoothedSum>
{
void add(double new_value, double current_time, double half_decay_time)
2021-09-12 05:28:57 +00:00
{
if (current_time > update_time)
{
/// Add newer value.
double old_value_weight = decay(current_time, update_time, half_decay_time);
value = value * old_value_weight + new_value;
update_time = current_time;
}
else
{
/// Add older value.
double new_value_weight = decay(update_time, current_time, half_decay_time);
value = value + new_value * new_value_weight;
}
2021-09-12 05:28:57 +00:00
}
};
}