ClickHouse/dbms/include/DB/AggregateFunctions/AggregateFunctionsStatistics.h

427 lines
11 KiB
C
Raw Normal View History

2015-05-19 15:06:12 +00:00
#pragma once
#include <DB/IO/WriteHelpers.h>
#include <DB/IO/ReadHelpers.h>
#include <DB/DataTypes/DataTypesNumberFixed.h>
#include <DB/AggregateFunctions/IUnaryAggregateFunction.h>
#include <DB/AggregateFunctions/IBinaryAggregateFunction.h>
#include <DB/Columns/ColumnVector.h>
#include <cmath>
namespace DB
{
/** Статистические аггрегатные функции:
* varSamp - выборочная дисперсия
* stddevSamp - среднее выборочное квадратичное отклонение
* varPop - дисперсия
* stddevPop - среднее квадратичное отклонение
* covarSamp - выборочная ковариация
* covarPop - ковариация
* corr - корреляция
*/
/** Параллельный и инкрементальный алгоритм для вычисления дисперсии.
* Источник: "Updating formulae and a pairwise algorithm for computing sample variances"
* (Chan et al., Stanford University, 12.1979)
*/
template<typename T, typename Op>
class AggregateFunctionVarianceData
{
public:
AggregateFunctionVarianceData() = default;
void update(const IColumn & column, size_t row_num)
{
T received = static_cast<const ColumnVector<T> &>(column).getData()[row_num];
Float64 val = static_cast<Float64>(received);
Float64 delta = val - mean;
++count;
mean += delta / count;
m2 += delta * (val - mean);
}
void mergeWith(const AggregateFunctionVarianceData & source)
{
UInt64 total_count = count + source.count;
if (total_count == 0)
return;
Float64 factor = static_cast<Float64>(count * source.count) / total_count;
Float64 delta = mean - source.mean;
auto res = std::minmax(count, source.count);
if (((1 - static_cast<Float64>(res.first) / res.second) < 0.001) && (res.first > 10000))
{
/// Эта формула более стабильная, когда размеры обоих источников велики и сравнимы.
mean = (source.count * source.mean + count * mean) / total_count;
}
else
mean = source.mean + delta * (static_cast<Float64>(count) / total_count);
m2 += source.m2 + delta * delta * factor;
count = total_count;
}
void serialize(WriteBuffer & buf) const
{
writeVarUInt(count, buf);
writeBinary(mean, buf);
writeBinary(m2, buf);
}
void deserialize(ReadBuffer & buf)
{
readVarUInt(count, buf);
readBinary(mean, buf);
readBinary(m2, buf);
}
void publish(IColumn & to) const
{
static_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(m2, count));
}
private:
UInt64 count = 0;
Float64 mean = 0.0;
Float64 m2 = 0.0;
};
/** Основной код для реализации функций varSamp, stddevSamp, varPop, stddevPop.
*/
template<typename T, typename Op>
class AggregateFunctionVariance final : public IUnaryAggregateFunction<AggregateFunctionVarianceData<T, Op>, AggregateFunctionVariance<T, Op> >
{
public:
String getName() const override { return Op::name; }
DataTypePtr getReturnType() const override
{
return new DataTypeFloat64;
}
void setArgument(const DataTypePtr & argument) override
{
if (!argument->behavesAsNumber())
throw Exception("Illegal type " + argument->getName() + " of argument for aggregate function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
void addOne(AggregateDataPtr place, const IColumn & column, size_t row_num) const
{
this->data(place).update(column, row_num);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
this->data(place).mergeWith(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
void deserializeMerge(AggregateDataPtr place, ReadBuffer & buf) const override
{
AggregateFunctionVarianceData<T, Op> source;
source.deserialize(buf);
this->data(place).mergeWith(source);
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
this->data(place).publish(to);
}
};
namespace
{
/** Реализации функции varSamp.
*/
struct VarSampImpl
{
static constexpr auto name = "varSamp";
static inline Float64 apply(Float64 m2, UInt64 count)
{
if (count < 2)
return 0.0;
else
return m2 / (count - 1);
}
};
/** Реализация функции stddevSamp.
*/
struct StdDevSampImpl
{
static constexpr auto name = "stddevSamp";
static inline Float64 apply(Float64 m2, UInt64 count)
{
return sqrt(VarSampImpl::apply(m2, count));
}
};
/** Реализация функции varPop.
*/
struct VarPopImpl
{
static constexpr auto name = "varPop";
static inline Float64 apply(Float64 m2, UInt64 count)
{
if (count < 2)
return 0.0;
else
return m2 / count;
}
};
/** Реализация функции stddevPop.
*/
struct StdDevPopImpl
{
static constexpr auto name = "stddevPop";
static inline Float64 apply(Float64 m2, UInt64 count)
{
return sqrt(VarPopImpl::apply(m2, count));
}
};
}
/** Параллельный и инкрементальный алгоритм для вычисления ковариации.
* Источник: "Numerically Stable, Single-Pass, Parallel Statistics Algorithms"
* (J. Bennett et al., Sandia National Laboratories,
* 2009 IEEE International Conference on Cluster Computing)
*/
template<typename T, typename U, typename Op, bool compute_marginal_moments>
class CovarianceData
{
public:
CovarianceData() = default;
void update(const IColumn & column_left, const IColumn & column_right, size_t row_num)
{
T left_received = static_cast<const ColumnVector<T> &>(column_left).getData()[row_num];
Float64 val_left = static_cast<Float64>(left_received);
Float64 left_delta = val_left - left_mean;
U right_received = static_cast<const ColumnVector<U> &>(column_right).getData()[row_num];
Float64 val_right = static_cast<Float64>(right_received);
Float64 right_delta = val_right - right_mean;
Float64 old_right_mean = right_mean;
++count;
left_mean += left_delta / count;
right_mean += right_delta / count;
co_moment += (val_left - left_mean) * (val_right - old_right_mean);
if (compute_marginal_moments)
{
left_m2 += left_delta * (val_left - left_mean);
right_m2 += right_delta * (val_right - right_mean);
}
}
void mergeWith(const CovarianceData & source)
{
UInt64 total_count = count + source.count;
if (total_count == 0)
return;
Float64 factor = static_cast<Float64>(count * source.count) / total_count;
Float64 left_delta = left_mean - source.left_mean;
Float64 right_delta = right_mean - source.right_mean;
left_mean = source.left_mean + left_delta * (static_cast<Float64>(count) / total_count);
right_mean = source.right_mean + right_delta * (static_cast<Float64>(count) / total_count);
co_moment += source.co_moment + left_delta * right_delta * factor;
count = total_count;
if (compute_marginal_moments)
{
left_m2 += source.left_m2 + left_delta * left_delta * factor;
right_m2 += source.right_m2 + right_delta * right_delta * factor;
}
}
void serialize(WriteBuffer & buf) const
{
writeVarUInt(count, buf);
writeBinary(left_mean, buf);
writeBinary(right_mean, buf);
writeBinary(co_moment, buf);
if (compute_marginal_moments)
{
writeBinary(left_m2, buf);
writeBinary(right_m2, buf);
}
}
void deserialize(ReadBuffer & buf)
{
readVarUInt(count, buf);
readBinary(left_mean, buf);
readBinary(right_mean, buf);
readBinary(co_moment, buf);
if (compute_marginal_moments)
{
readBinary(left_m2, buf);
readBinary(right_m2, buf);
}
}
void publish(IColumn & to) const
{
static_cast<ColumnFloat64 &>(to).getData().push_back(Op::apply(co_moment, left_m2, right_m2, count));
}
private:
UInt64 count = 0;
Float64 left_mean = 0.0;
Float64 right_mean = 0.0;
Float64 co_moment = 0.0;
Float64 left_m2 = 0.0;
Float64 right_m2 = 0.0;
};
template<typename T, typename U, typename Op, bool compute_marginal_moments = false>
class AggregateFunctionCovariance final
: public IBinaryAggregateFunction<
CovarianceData<T, U, Op, compute_marginal_moments>,
AggregateFunctionCovariance<T, U, Op, compute_marginal_moments> >
{
public:
String getName() const override { return Op::name; }
DataTypePtr getReturnType() const override
{
return new DataTypeFloat64;
}
void setArgumentsImpl(const DataTypes & arguments)
{
if (!arguments[0]->behavesAsNumber())
throw Exception("Illegal type " + arguments[0]->getName() + " of first argument to function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
if (!arguments[1]->behavesAsNumber())
throw Exception("Illegal type " + arguments[1]->getName() + " of second argument to function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
void addOne(AggregateDataPtr place, const IColumn & column_left, const IColumn & column_right, size_t row_num) const
{
this->data(place).update(column_left, column_right, row_num);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
this->data(place).mergeWith(this->data(rhs));
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).serialize(buf);
}
void deserializeMerge(AggregateDataPtr place, ReadBuffer & buf) const override
{
CovarianceData<T, U, Op, compute_marginal_moments> source;
source.deserialize(buf);
this->data(place).mergeWith(source);
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
this->data(place).publish(to);
}
};
namespace
{
/** Реализация функции covarSamp.
*/
struct CovarSampImpl
{
static constexpr auto name = "covarSamp";
static inline Float64 apply(Float64 co_moment, Float64 left_m2, Float64 right_m2, UInt64 count)
{
if (count < 2)
return 0.0;
else
return co_moment / (count - 1);
}
};
/** Реализация функции covarPop.
*/
struct CovarPopImpl
{
static constexpr auto name = "covarPop";
static inline Float64 apply(Float64 co_moment, Float64 left_m2, Float64 right_m2, UInt64 count)
{
if (count < 2)
return 0.0;
else
return co_moment / count;
}
};
/** Реализация функции corr.
*/
struct CorrImpl
{
static constexpr auto name = "corr";
static inline Float64 apply(Float64 co_moment, Float64 left_m2, Float64 right_m2, UInt64 count)
{
if (count < 2)
return 0.0;
else
return co_moment / sqrt(left_m2 * right_m2);
}
};
}
template<typename T>
using AggregateFunctionVarSamp = AggregateFunctionVariance<T, VarSampImpl>;
template<typename T>
using AggregateFunctionStdDevSamp = AggregateFunctionVariance<T, StdDevSampImpl>;
template<typename T>
using AggregateFunctionVarPop = AggregateFunctionVariance<T, VarPopImpl>;
template<typename T>
using AggregateFunctionStdDevPop = AggregateFunctionVariance<T, StdDevPopImpl>;
template<typename T, typename U>
using AggregateFunctionCovarSamp = AggregateFunctionCovariance<T, U, CovarSampImpl>;
template<typename T, typename U>
using AggregateFunctionCovarPop = AggregateFunctionCovariance<T, U, CovarPopImpl>;
template<typename T, typename U>
using AggregateFunctionCorr = AggregateFunctionCovariance<T, U, CorrImpl, true>;
}