ClickHouse/dbms/include/DB/Functions/FunctionsRound.h

1162 lines
33 KiB
C
Raw Normal View History

#pragma once
#include <DB/Functions/FunctionsArithmetic.h>
2015-05-14 12:08:27 +00:00
#include <cmath>
#include <type_traits>
#include <array>
#if defined(__x86_64__)
#include <smmintrin.h>
#endif
namespace DB
{
/** Функции округления:
* roundToExp2 - вниз до ближайшей степени двойки;
* roundDuration - вниз до ближайшего из: 0, 1, 10, 30, 60, 120, 180, 240, 300, 600, 1200, 1800, 3600, 7200, 18000, 36000;
* roundAge - вниз до ближайшего из: 0, 18, 25, 35, 45.
*
* round(x, N) - арифметическое округление (N = 0 по умолчанию).
* ceil(x, N) - наименьшее число, которое не меньше x (N = 0 по умолчанию).
* floor(x, N) - наибольшее число, которое не больше x (N = 0 по умолчанию).
*
* Значение параметра N:
* - N > 0: округлять до числа с N десятичными знаками после запятой
* - N < 0: окурглять до целого числа с N нулевыми знаками
* - N = 0: округлять до целого числа
*/
template<typename A>
struct RoundToExp2Impl
{
typedef A ResultType;
static inline A apply(A x)
{
return x <= 0 ? static_cast<A>(0) : (static_cast<A>(1) << static_cast<UInt64>(log2(static_cast<double>(x))));
}
};
template<>
struct RoundToExp2Impl<Float32>
{
typedef Float32 ResultType;
static inline Float32 apply(Float32 x)
{
return static_cast<Float32>(x < 1 ? 0. : pow(2., floor(log2(x))));
}
};
template<>
struct RoundToExp2Impl<Float64>
{
typedef Float64 ResultType;
static inline Float64 apply(Float64 x)
{
return x < 1 ? 0. : pow(2., floor(log2(x)));
}
};
template<typename A>
struct RoundDurationImpl
{
typedef UInt16 ResultType;
static inline ResultType apply(A x)
{
return x < 1 ? 0
: (x < 10 ? 1
: (x < 30 ? 10
: (x < 60 ? 30
: (x < 120 ? 60
: (x < 180 ? 120
: (x < 240 ? 180
: (x < 300 ? 240
: (x < 600 ? 300
: (x < 1200 ? 600
: (x < 1800 ? 1200
: (x < 3600 ? 1800
: (x < 7200 ? 3600
: (x < 18000 ? 7200
: (x < 36000 ? 18000
: 36000))))))))))))));
}
};
template<typename A>
struct RoundAgeImpl
{
typedef UInt8 ResultType;
static inline ResultType apply(A x)
{
return x < 1 ? 0
: (x < 18 ? 17
: (x < 25 ? 18
: (x < 35 ? 25
: (x < 45 ? 35
: 45))));
}
};
/** Быстрое вычисление остатка от деления для применения к округлению целых чисел.
* Без проверки, потому что делитель всегда положительный.
*/
template<typename T, typename Enable = void>
struct FastModulo;
template<typename T>
struct FastModulo<T, typename std::enable_if<std::is_integral<T>::value>::type>
{
private:
template<typename InputType, typename Enable = void>
struct Extend;
template<typename InputType>
struct Extend<InputType,
typename std::enable_if<std::is_same<InputType, Int8>::value
|| std::is_same<InputType, Int16>::value>::type>
{
using Type = Int64;
};
template<typename InputType>
struct Extend<InputType,
typename std::enable_if<std::is_same<InputType, UInt8>::value
|| std::is_same<InputType, UInt16>::value>::type>
{
using Type = UInt64;
};
template<typename InputType>
struct Extend<InputType,
typename std::enable_if<std::is_integral<InputType>::value
&& (sizeof(InputType) >= 4)>::type>
{
using Type = InputType;
};
using U = typename Extend<T>::Type;
public:
using Divisor = std::pair<size_t, typename libdivide::divider<U> >;
static inline Divisor prepare(size_t b)
{
return std::make_pair(b, libdivide::divider<U>(b));
}
static inline T compute(T a, const Divisor & divisor)
{
U val = static_cast<U>(a);
U rem = val - (val / divisor.second) * static_cast<U>(divisor.first);
return static_cast<T>(rem);
}
};
/** Этот параметр контролирует поведение функций округления.
*/
enum ScaleMode
{
PositiveScale, // округлять до числа с N десятичными знаками после запятой
NegativeScale, // окурглять до целого числа с N нулевыми знаками
ZeroScale, // округлять до целого числа
NullScale // возвращать нулевое значение
};
2015-05-19 13:23:13 +00:00
#if !defined(_MM_FROUND_NINT)
#define _MM_FROUND_NINT 0
#define _MM_FROUND_FLOOR 1
#define _MM_FROUND_CEIL 2
#endif
/** Реализация низкоуровневых функций округления для целочисленных значений.
*/
template<typename T, int rounding_mode, ScaleMode scale_mode, typename Enable = void>
struct IntegerRoundingComputation;
2015-05-19 13:23:13 +00:00
template<typename T, int rounding_mode, ScaleMode scale_mode>
struct IntegerRoundingComputation<T, rounding_mode, scale_mode,
typename std::enable_if<std::is_integral<T>::value
&& ((scale_mode == PositiveScale) || (scale_mode == ZeroScale))>::type>
{
using Divisor = int;
static inline Divisor prepare(size_t scale)
{
return 0;
}
static inline T compute(T in, const Divisor & scale)
{
return in;
}
};
template<typename T>
struct IntegerRoundingComputation<T, _MM_FROUND_NINT, NegativeScale,
typename std::enable_if<std::is_integral<T>::value>::type>
{
using Op = FastModulo<T>;
using Divisor = typename Op::Divisor;
static inline Divisor prepare(size_t scale)
{
return Op::prepare(scale);
}
static inline T compute(T in, const Divisor & scale)
{
T factor = (in < 0) ? -1 : 1;
in *= factor;
T rem = Op::compute(in, scale);
in -= rem;
T res;
if ((2 * rem) < static_cast<T>(scale.first))
res = in;
else
res = in + scale.first;
return factor * res;
}
};
template<typename T>
struct IntegerRoundingComputation<T, _MM_FROUND_CEIL, NegativeScale,
typename std::enable_if<std::is_integral<T>::value>::type>
{
using Op = FastModulo<T>;
using Divisor = typename Op::Divisor;
static inline Divisor prepare(size_t scale)
{
return Op::prepare(scale);
}
static inline T compute(T in, const Divisor & scale)
{
T factor = (in < 0) ? -1 : 1;
in *= factor;
T rem = Op::compute(in, scale);
T res = in - rem + scale.first;
return factor * res;
}
};
template<typename T>
struct IntegerRoundingComputation<T, _MM_FROUND_FLOOR, NegativeScale,
typename std::enable_if<std::is_integral<T>::value>::type>
{
using Op = FastModulo<T>;
using Divisor = typename Op::Divisor;
static inline Divisor prepare(size_t scale)
{
return Op::prepare(scale);
}
static inline T compute(T in, const Divisor & scale)
{
T factor = (in < 0) ? -1 : 1;
in *= factor;
T rem = Op::compute(in, scale);
T res = in - rem;
return factor * res;
}
};
#if defined(__x86_64__)
template <typename T>
class BaseFloatRoundingComputation;
template <>
class BaseFloatRoundingComputation<Float32>
2015-05-14 12:08:27 +00:00
{
public:
2015-05-19 13:23:13 +00:00
using Scale = __m128;
static const size_t data_count = 4;
protected:
/// Предотвратить появление отрицательных нолей определённых в стандарте IEEE-754.
static inline void normalize(__m128 & val, const __m128 & mask)
{
__m128 mask1 = _mm_cmpeq_ps(val, getZero());
__m128 mask2 = _mm_and_ps(mask, mask1);
mask2 = _mm_cmpeq_ps(mask2, getZero());
mask2 = _mm_min_ps(mask2, getTwo());
mask2 = _mm_sub_ps(mask2, getOne());
val = _mm_mul_ps(val, mask2);
}
static inline const __m128 & getZero()
{
static const __m128 zero = _mm_set1_ps(0.0);
return zero;
}
static inline const __m128 & getOne()
{
static const __m128 one = _mm_set1_ps(1.0);
return one;
}
static inline const __m128 & getTwo()
{
static const __m128 two = _mm_set1_ps(2.0);
return two;
}
};
2015-05-19 13:23:13 +00:00
template <>
class BaseFloatRoundingComputation<Float64>
{
public:
using Scale = __m128d;
static const size_t data_count = 2;
protected:
/// Предотвратить появление отрицательных нолей определённых в стандарте IEEE-754.
static inline void normalize(__m128d & val, const __m128d & mask)
{
__m128d mask1 = _mm_cmpeq_pd(val, getZero());
__m128d mask2 = _mm_and_pd(mask, mask1);
mask2 = _mm_cmpeq_pd(mask2, getZero());
mask2 = _mm_min_pd(mask2, getTwo());
mask2 = _mm_sub_pd(mask2, getOne());
val = _mm_mul_pd(val, mask2);
}
static inline const __m128d & getZero()
{
static const __m128d zero = _mm_set1_pd(0.0);
return zero;
}
static inline const __m128d & getOne()
{
static const __m128d one = _mm_set1_pd(1.0);
return one;
}
static inline const __m128d & getTwo()
{
static const __m128d two = _mm_set1_pd(2.0);
return two;
}
};
/** Реализация низкоуровневых функций округления для значений с плавающей точкой.
*/
template<typename T, int rounding_mode, ScaleMode scale_mode>
class FloatRoundingComputation;
template<int rounding_mode>
class FloatRoundingComputation<Float32, rounding_mode, PositiveScale>
: public BaseFloatRoundingComputation<Float32>
{
public:
static inline void prepare(size_t scale, Scale & mm_scale)
2015-05-14 12:08:27 +00:00
{
2015-05-19 13:23:13 +00:00
Float32 fscale = static_cast<Float32>(scale);
mm_scale = _mm_load1_ps(&fscale);
}
static inline void compute(const Float32 * __restrict in, const Scale & scale, Float32 * __restrict out)
{
__m128 val = _mm_loadu_ps(in);
__m128 mask = _mm_cmplt_ps(val, getZero());
/// Алгоритм округления.
val = _mm_mul_ps(val, scale);
val = _mm_round_ps(val, rounding_mode);
val = _mm_div_ps(val, scale);
normalize(val, mask);
_mm_storeu_ps(out, val);
}
};
template<int rounding_mode>
class FloatRoundingComputation<Float32, rounding_mode, NegativeScale>
: public BaseFloatRoundingComputation<Float32>
{
public:
static inline void prepare(size_t scale, Scale & mm_scale)
{
Float32 fscale = static_cast<Float32>(scale);
mm_scale = _mm_load1_ps(&fscale);
}
static inline void compute(const Float32 * __restrict in, const Scale & scale, Float32 * __restrict out)
2015-05-19 13:23:13 +00:00
{
__m128 val = _mm_loadu_ps(in);
__m128 mask = _mm_cmplt_ps(val, getZero());
/// Превратить отрицательные значения в положительные.
__m128 factor = _mm_cmpge_ps(val, getZero());
factor = _mm_min_ps(factor, getTwo());
factor = _mm_sub_ps(factor, getOne());
val = _mm_mul_ps(val, factor);
/// Алгоритм округления.
val = _mm_div_ps(val, scale);
__m128 res = _mm_cmpge_ps(val, getOneTenth());
val = _mm_round_ps(val, rounding_mode);
val = _mm_mul_ps(val, scale);
val = _mm_and_ps(val, res);
/// Вернуть настоящие знаки всех значений.
val = _mm_mul_ps(val, factor);
normalize(val, mask);
_mm_storeu_ps(out, val);
2015-05-19 13:23:13 +00:00
}
private:
static inline const __m128 & getOneTenth()
{
static const __m128 one_tenth = _mm_set1_ps(0.1);
return one_tenth;
}
2015-05-19 13:23:13 +00:00
};
template<int rounding_mode>
class FloatRoundingComputation<Float32, rounding_mode, ZeroScale>
: public BaseFloatRoundingComputation<Float32>
2015-05-19 13:23:13 +00:00
{
public:
static inline void prepare(size_t scale, Scale & mm_scale)
{
}
static inline void compute(const Float32 * __restrict in, const Scale & scale, Float32 * __restrict out)
{
__m128 val = _mm_loadu_ps(in);
__m128 mask = _mm_cmplt_ps(val, getZero());
val = _mm_round_ps(val, rounding_mode);
normalize(val, mask);
_mm_storeu_ps(out, val);
}
};
2015-05-19 13:23:13 +00:00
template<int rounding_mode>
class FloatRoundingComputation<Float64, rounding_mode, PositiveScale>
: public BaseFloatRoundingComputation<Float64>
{
public:
static inline void prepare(size_t scale, Scale & mm_scale)
2015-05-19 13:23:13 +00:00
{
Float64 fscale = static_cast<Float64>(scale);
mm_scale = _mm_load1_pd(&fscale);
}
static inline void compute(const Float64 * __restrict in, const Scale & scale, Float64 * __restrict out)
{
__m128d val = _mm_loadu_pd(in);
__m128d mask = _mm_cmplt_pd(val, getZero());
/// Алгоритм округления.
val = _mm_mul_pd(val, scale);
val = _mm_round_pd(val, rounding_mode);
val = _mm_div_pd(val, scale);
normalize(val, mask);
_mm_storeu_pd(out, val);
}
};
template<int rounding_mode>
class FloatRoundingComputation<Float64, rounding_mode, NegativeScale>
: public BaseFloatRoundingComputation<Float64>
{
public:
static inline void prepare(size_t scale, Scale & mm_scale)
{
Float64 fscale = static_cast<Float64>(scale);
mm_scale = _mm_load1_pd(&fscale);
}
static inline void compute(const Float64 * __restrict in, const Scale & scale, Float64 * __restrict out)
2015-05-19 13:23:13 +00:00
{
__m128d val = _mm_loadu_pd(in);
__m128d mask = _mm_cmplt_pd(val, getZero());
/// Превратить отрицательные значения в положительные.
__m128d factor = _mm_cmpge_pd(val, getZero());
factor = _mm_min_pd(factor, getTwo());
factor = _mm_sub_pd(factor, getOne());
val = _mm_mul_pd(val, factor);
/// Алгоритм округления.
val = _mm_div_pd(val, scale);
__m128d res = _mm_cmpge_pd(val, getOneTenth());
val = _mm_round_pd(val, rounding_mode);
val = _mm_mul_pd(val, scale);
val = _mm_and_pd(val, res);
/// Вернуть настоящие знаки всех значений.
val = _mm_mul_pd(val, factor);
normalize(val, mask);
_mm_storeu_pd(out, val);
2015-05-19 13:23:13 +00:00
}
private:
static inline const __m128d & getOneTenth()
{
static const __m128d one_tenth = _mm_set1_pd(0.1);
return one_tenth;
}
2015-05-19 13:23:13 +00:00
};
template<int rounding_mode>
class FloatRoundingComputation<Float64, rounding_mode, ZeroScale>
: public BaseFloatRoundingComputation<Float64>
{
public:
static inline void prepare(size_t scale, Scale & mm_scale)
{
}
static inline void compute(const Float64 * __restrict in, const Scale & scale, Float64 * __restrict out)
{
__m128d val = _mm_loadu_pd(in);
__m128d mask = _mm_cmplt_pd(val, getZero());
val = _mm_round_pd(val, rounding_mode);
normalize(val, mask);
_mm_storeu_pd(out, val);
}
};
#else
/// Реализация для ARM. Не векторизована. Не исправляет отрицательные нули.
template <int mode>
float roundWithMode(float x)
{
if (mode == _MM_FROUND_NINT) return roundf(x);
if (mode == _MM_FROUND_FLOOR) return floorf(x);
if (mode == _MM_FROUND_CEIL) return ceilf(x);
__builtin_unreachable();
}
template <int mode>
double roundWithMode(double x)
{
if (mode == _MM_FROUND_NINT) return round(x);
if (mode == _MM_FROUND_FLOOR) return floor(x);
if (mode == _MM_FROUND_CEIL) return ceil(x);
__builtin_unreachable();
}
template <typename T>
class BaseFloatRoundingComputation
{
public:
using Scale = T;
static const size_t data_count = 1;
static inline void prepare(size_t scale, Scale & mm_scale)
{
mm_scale = static_cast<T>(scale);
}
};
template <typename T, int rounding_mode, ScaleMode scale_mode>
class FloatRoundingComputation;
template <typename T, int rounding_mode>
class FloatRoundingComputation<T, rounding_mode, PositiveScale>
: public BaseFloatRoundingComputation<T>
{
public:
static inline void compute(const T * __restrict in, const T & scale, T * __restrict out)
{
out[0] = roundWithMode<rounding_mode>(in[0] * scale) / scale;
}
};
template <typename T, int rounding_mode>
class FloatRoundingComputation<T, rounding_mode, NegativeScale>
: public BaseFloatRoundingComputation<T>
{
public:
static inline void compute(const T * __restrict in, const T & scale, T * __restrict out)
{
out[0] = roundWithMode<rounding_mode>(in[0] / scale) * scale;
}
};
template <typename T, int rounding_mode>
class FloatRoundingComputation<T, rounding_mode, ZeroScale>
: public BaseFloatRoundingComputation<T>
{
public:
static inline void prepare(size_t scale, T & mm_scale)
{
}
static inline void compute(const T * __restrict in, const T & scale, T * __restrict out)
{
out[0] = roundWithMode<rounding_mode>(in[0]);
}
};
#endif
2015-05-19 13:23:13 +00:00
/** Реализация высокоуровневых функций округления.
*/
template<typename T, int rounding_mode, ScaleMode scale_mode, typename Enable = void>
struct FunctionRoundingImpl;
2015-05-19 13:23:13 +00:00
/** Реализация высокоуровневых функций округления для целочисленных значений.
*/
template<typename T, int rounding_mode, ScaleMode scale_mode>
struct FunctionRoundingImpl<T, rounding_mode, scale_mode,
typename std::enable_if<std::is_integral<T>::value && (scale_mode != NullScale)>::type>
2015-05-19 13:23:13 +00:00
{
private:
using Op = IntegerRoundingComputation<T, rounding_mode, scale_mode>;
public:
2015-05-19 13:23:13 +00:00
static inline void apply(const PODArray<T> & in, size_t scale, typename ColumnVector<T>::Container_t & out)
{
auto divisor = Op::prepare(scale);
const T* begin_in = &in[0];
const T* end_in = begin_in + in.size();
T* __restrict p_out = &out[0];
for (const T* __restrict p_in = begin_in; p_in != end_in; ++p_in)
{
*p_out = Op::compute(*p_in, divisor);
++p_out;
}
2015-05-19 13:23:13 +00:00
}
static inline T apply(T val, size_t scale)
{
auto divisor = Op::prepare(scale);
return Op::compute(val, divisor);
2015-05-19 13:23:13 +00:00
}
};
/** Реализация высокоуровневых функций округления для значений с плавающей точкой.
*/
template<typename T, int rounding_mode, ScaleMode scale_mode>
struct FunctionRoundingImpl<T, rounding_mode, scale_mode,
typename std::enable_if<std::is_floating_point<T>::value && (scale_mode != NullScale)>::type>
2015-05-19 13:23:13 +00:00
{
private:
using Op = FloatRoundingComputation<T, rounding_mode, scale_mode>;
using Data = std::array<T, Op::data_count>;
2015-05-19 13:23:13 +00:00
using Scale = typename Op::Scale;
public:
static inline void apply(const PODArray<T> & in, size_t scale, typename ColumnVector<T>::Container_t & out)
{
Scale mm_scale;
Op::prepare(scale, mm_scale);
2015-05-19 13:23:13 +00:00
const size_t data_count = std::tuple_size<Data>();
2015-05-19 13:23:13 +00:00
const T* begin_in = &in[0];
const T* end_in = begin_in + in.size();
T* begin_out = &out[0];
const T* end_out = begin_out + out.size();
2015-05-19 13:23:13 +00:00
const T* limit = end_in - (data_count - 1);
const T* __restrict p_in = begin_in;
T* __restrict p_out = begin_out;
for (; p_in < limit; p_in += data_count)
{
Op::compute(p_in, mm_scale, p_out);
p_out += data_count;
}
if (p_in < end_in)
2015-05-19 13:23:13 +00:00
{
2016-03-07 05:15:42 +00:00
Data tmp{{}};
T* begin_tmp = &tmp[0];
const T* end_tmp = begin_tmp + data_count;
for (T* __restrict p_tmp = begin_tmp; (p_tmp != end_tmp) && (p_in != end_in); ++p_tmp)
{
*p_tmp = *p_in;
++p_in;
}
2015-05-19 13:23:13 +00:00
Data res;
const T* begin_res = &res[0];
const T* end_res = begin_res + data_count;
Op::compute(reinterpret_cast<T *>(&tmp), mm_scale, reinterpret_cast<T *>(&res));
2015-05-19 13:23:13 +00:00
for (const T* __restrict p_res = begin_res; (p_res != end_res) && (p_out != end_out); ++p_res)
{
*p_out = *p_res;
++p_out;
}
2015-05-14 12:08:27 +00:00
}
}
2015-05-19 13:23:13 +00:00
static inline T apply(T val, size_t scale)
2015-05-14 12:08:27 +00:00
{
2015-05-19 13:23:13 +00:00
if (val == 0)
return val;
else
{
Scale mm_scale;
Op::prepare(scale, mm_scale);
2015-05-19 13:23:13 +00:00
2016-03-07 05:15:42 +00:00
Data tmp{{}};
2015-05-19 13:23:13 +00:00
tmp[0] = val;
Data res;
Op::compute(reinterpret_cast<T *>(&tmp), mm_scale, reinterpret_cast<T *>(&res));
2015-05-19 13:23:13 +00:00
return res[0];
}
2015-05-14 12:08:27 +00:00
}
};
/** Реализация высокоуровневых функций округления в том случае, когда возвращается нулевое значение.
*/
template<typename T, int rounding_mode, ScaleMode scale_mode>
struct FunctionRoundingImpl<T, rounding_mode, scale_mode,
typename std::enable_if<scale_mode == NullScale>::type>
2015-05-14 12:08:27 +00:00
{
public:
static inline void apply(const PODArray<T> & in, size_t scale, typename ColumnVector<T>::Container_t & out)
2015-05-14 12:08:27 +00:00
{
2015-05-29 16:46:46 +00:00
::memset(reinterpret_cast<T *>(&out[0]), 0, in.size() * sizeof(T));
2015-05-14 12:08:27 +00:00
}
static inline T apply(T val, size_t scale)
2015-05-14 12:08:27 +00:00
{
return 0;
2015-05-14 12:08:27 +00:00
}
};
/// Следующий код генерирует во время сборки таблицу степеней числа 10.
namespace
{
/// Отдельные степени числа 10.
template<size_t N>
2015-05-14 12:08:27 +00:00
struct PowerOf10
{
static const size_t value = 10 * PowerOf10<N - 1>::value;
};
template<>
struct PowerOf10<0>
{
static const size_t value = 1;
};
}
/// Объявление и определение контейнера содержащего таблицу степеней числа 10.
template<size_t... TArgs>
2015-05-14 12:08:27 +00:00
struct TableContainer
{
static const std::array<size_t, sizeof...(TArgs)> values;
};
template<size_t... TArgs>
2016-03-07 06:08:34 +00:00
const std::array<size_t, sizeof...(TArgs)> TableContainer<TArgs...>::values {{ TArgs... }};
2015-05-14 12:08:27 +00:00
/// Генератор первых N степеней.
template<size_t N, size_t... TArgs>
2015-05-14 12:08:27 +00:00
struct FillArrayImpl
{
using result = typename FillArrayImpl<N - 1, PowerOf10<N>::value, TArgs...>::result;
};
template<size_t... TArgs>
2015-05-14 12:08:27 +00:00
struct FillArrayImpl<0, TArgs...>
{
using result = TableContainer<PowerOf10<0>::value, TArgs...>;
};
template<size_t N>
2015-05-14 12:08:27 +00:00
struct FillArray
{
using result = typename FillArrayImpl<N - 1>::result;
2015-05-14 12:08:27 +00:00
};
/** Этот шаблон определяет точность, которую используют функции round/ceil/floor,
* затем преобразовывает её в значение, которое можно использовать в операциях
* умножения и деления. Поэтому оно называется масштабом.
*/
template<typename T, typename U, typename Enable = void>
struct ScaleForRightType;
template<typename T, typename U>
struct ScaleForRightType<T, U,
typename std::enable_if<
std::is_floating_point<T>::value
&& std::is_signed<U>::value>::type>
{
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
{
using PowersOf10 = typename FillArray<std::numeric_limits<T>::digits10 + 1>::result;
using ColumnType = ColumnConst<U>;
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
if (precision_col == nullptr)
return false;
U val = precision_col->getData();
if (val < 0)
{
if (val < -static_cast<U>(std::numeric_limits<T>::digits10))
{
scale_mode = NullScale;
scale = 1;
}
else
{
scale_mode = NegativeScale;
scale = PowersOf10::values[-val];
}
}
else if (val == 0)
{
scale_mode = ZeroScale;
scale = 1;
}
else
{
scale_mode = PositiveScale;
if (val > std::numeric_limits<T>::digits10)
val = static_cast<U>(std::numeric_limits<T>::digits10);
scale = PowersOf10::values[val];
}
return true;
}
};
template<typename T, typename U>
struct ScaleForRightType<T, U,
typename std::enable_if<
std::is_floating_point<T>::value
&& std::is_unsigned<U>::value>::type>
{
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
{
using PowersOf10 = typename FillArray<std::numeric_limits<T>::digits10 + 1>::result;
using ColumnType = ColumnConst<U>;
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
if (precision_col == nullptr)
return false;
U val = precision_col->getData();
if (val == 0)
{
scale_mode = ZeroScale;
scale = 1;
}
else
{
scale_mode = PositiveScale;
if (val > static_cast<U>(std::numeric_limits<T>::digits10))
val = static_cast<U>(std::numeric_limits<T>::digits10);
scale = PowersOf10::values[val];
}
return true;
}
};
template<typename T, typename U>
struct ScaleForRightType<T, U,
typename std::enable_if<
std::is_integral<T>::value
&& std::is_signed<U>::value>::type>
{
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
{
using PowersOf10 = typename FillArray<std::numeric_limits<T>::digits10 + 1>::result;
using ColumnType = ColumnConst<U>;
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
if (precision_col == nullptr)
return false;
U val = precision_col->getData();
if (val < 0)
{
if (val < -std::numeric_limits<T>::digits10)
{
scale_mode = NullScale;
scale = 1;
}
else
{
scale_mode = NegativeScale;
scale = PowersOf10::values[-val];
}
}
else
{
scale_mode = ZeroScale;
scale = 1;
}
return true;
}
};
template<typename T, typename U>
struct ScaleForRightType<T, U,
typename std::enable_if<
std::is_integral<T>::value
&& std::is_unsigned<U>::value>::type>
{
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
{
using ColumnType = ColumnConst<U>;
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
if (precision_col == nullptr)
return false;
scale_mode = ZeroScale;
scale = 1;
return true;
}
};
/** Превратить параметр точности в масштаб.
*/
template<typename T>
struct ScaleForLeftType
{
static inline void apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
{
if (!( ScaleForRightType<T, UInt8>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, UInt16>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, UInt16>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, UInt32>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, UInt64>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, Int8>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, Int16>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, Int32>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, Int64>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, Float32>::apply(column, scale_mode, scale)
|| ScaleForRightType<T, Float64>::apply(column, scale_mode, scale)))
{
throw Exception("Internal error", ErrorCodes::LOGICAL_ERROR);
}
}
};
/** Главный шаблон применяющий функцию округления к значению или столбцу.
*/
template<typename T, int rounding_mode, ScaleMode scale_mode>
struct Cruncher
{
using Op = FunctionRoundingImpl<T, rounding_mode, scale_mode>;
static inline void apply(Block & block, ColumnVector<T> * col, const ColumnNumbers & arguments, size_t result, size_t scale)
{
ColumnVector<T> * col_res = new ColumnVector<T>;
block.getByPosition(result).column = col_res;
typename ColumnVector<T>::Container_t & vec_res = col_res->getData();
vec_res.resize(col->getData().size());
Op::apply(col->getData(), scale, vec_res);
}
static inline void apply(Block & block, ColumnConst<T> * col, const ColumnNumbers & arguments, size_t result, size_t scale)
{
T res = Op::apply(col->getData(), scale);
ColumnConst<T> * col_res = new ColumnConst<T>(col->size(), res);
block.getByPosition(result).column = col_res;
}
};
/** Выбрать подходящий алгоритм обработки в зависимости от масштаба.
*/
template<typename T, template <typename> class U, int rounding_mode>
struct Dispatcher
{
static inline void apply(Block & block, U<T> * col, const ColumnNumbers & arguments, size_t result)
{
ScaleMode scale_mode;
size_t scale;
if (arguments.size() == 2)
ScaleForLeftType<T>::apply(block.getByPosition(arguments[1]).column, scale_mode, scale);
else
{
scale_mode = ZeroScale;
scale = 1;
}
if (scale_mode == PositiveScale)
Cruncher<T, rounding_mode, PositiveScale>::apply(block, col, arguments, result, scale);
else if (scale_mode == ZeroScale)
Cruncher<T, rounding_mode, ZeroScale>::apply(block, col, arguments, result, scale);
else if (scale_mode == NegativeScale)
Cruncher<T, rounding_mode, NegativeScale>::apply(block, col, arguments, result, scale);
else if (scale_mode == NullScale)
Cruncher<T, rounding_mode, NullScale>::apply(block, col, arguments, result, scale);
else
throw Exception("Illegal operation", ErrorCodes::LOGICAL_ERROR);
}
};
/** Шаблон для функций, которые округляют значение входного параметра типа
* (U)Int8/16/32/64 или Float32/64, и принимают дополнительный необязятельный
* параметр (по умолчанию - 0).
2015-05-14 12:08:27 +00:00
*/
2015-05-19 13:23:13 +00:00
template<typename Name, int rounding_mode>
class FunctionRounding : public IFunction
2015-05-14 12:08:27 +00:00
{
public:
static constexpr auto name = Name::name;
2015-05-19 13:23:13 +00:00
static IFunction * create(const Context & context) { return new FunctionRounding; }
2015-05-14 12:08:27 +00:00
private:
template<typename T>
bool checkType(const IDataType * type) const
{
return typeid_cast<const T *>(type) != nullptr;
}
template<typename T>
bool executeForType(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (ColumnVector<T> * col = typeid_cast<ColumnVector<T> *>(&*block.getByPosition(arguments[0]).column))
{
Dispatcher<T, ColumnVector, rounding_mode>::apply(block, col, arguments, result);
2015-05-14 12:08:27 +00:00
return true;
}
else if (ColumnConst<T> * col = typeid_cast<ColumnConst<T> *>(&*block.getByPosition(arguments[0]).column))
{
Dispatcher<T, ColumnConst, rounding_mode>::apply(block, col, arguments, result);
2015-05-14 12:08:27 +00:00
return true;
}
else
return false;
2015-05-14 12:08:27 +00:00
}
public:
/// Получить имя функции.
String getName() const override
{
return name;
}
/// Получить типы результата по типам аргументов. Если функция неприменима для данных аргументов - кинуть исключение.
DataTypePtr getReturnType(const DataTypes & arguments) const override
{
if ((arguments.size() < 1) || (arguments.size() > 2))
throw Exception("Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be 1 or 2.",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
if (arguments.size() == 2)
{
const IDataType * type = &*arguments[1];
if (!( checkType<DataTypeUInt8>(type)
|| checkType<DataTypeUInt16>(type)
|| checkType<DataTypeUInt32>(type)
|| checkType<DataTypeUInt64>(type)
|| checkType<DataTypeInt8>(type)
|| checkType<DataTypeInt16>(type)
|| checkType<DataTypeInt32>(type)
|| checkType<DataTypeInt64>(type)
|| checkType<DataTypeFloat32>(type)
|| checkType<DataTypeFloat64>(type)))
2015-05-14 12:08:27 +00:00
{
throw Exception("Illegal type in second argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
}
const IDataType * type = &*arguments[0];
if (!type->behavesAsNumber())
throw Exception("Illegal type " + arguments[0]->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return arguments[0];
}
/// Выполнить функцию над блоком.
void execute(Block & block, const ColumnNumbers & arguments, size_t result) override
{
if (!( executeForType<UInt8>(block, arguments, result)
|| executeForType<UInt16>(block, arguments, result)
|| executeForType<UInt32>(block, arguments, result)
|| executeForType<UInt64>(block, arguments, result)
|| executeForType<Int8>(block, arguments, result)
|| executeForType<Int16>(block, arguments, result)
|| executeForType<Int32>(block, arguments, result)
|| executeForType<Int64>(block, arguments, result)
|| executeForType<Float32>(block, arguments, result)
|| executeForType<Float64>(block, arguments, result)))
{
throw Exception("Illegal column " + block.getByPosition(arguments[0]).column->getName()
+ " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
}
bool hasInformationAboutMonotonicity() const override
{
return true;
}
Monotonicity getMonotonicityForRange(const IDataType & type, const Field & left, const Field & right) const override
{
return { true };
}
2015-05-14 12:08:27 +00:00
};
struct NameRoundToExp2 { static constexpr auto name = "roundToExp2"; };
struct NameRoundDuration { static constexpr auto name = "roundDuration"; };
struct NameRoundAge { static constexpr auto name = "roundAge"; };
2015-05-14 12:08:27 +00:00
struct NameRound { static constexpr auto name = "round"; };
struct NameCeil { static constexpr auto name = "ceil"; };
struct NameFloor { static constexpr auto name = "floor"; };
typedef FunctionUnaryArithmetic<RoundToExp2Impl, NameRoundToExp2> FunctionRoundToExp2;
typedef FunctionUnaryArithmetic<RoundDurationImpl, NameRoundDuration> FunctionRoundDuration;
typedef FunctionUnaryArithmetic<RoundAgeImpl, NameRoundAge> FunctionRoundAge;
2015-05-19 13:23:13 +00:00
typedef FunctionRounding<NameRound, _MM_FROUND_NINT> FunctionRound;
typedef FunctionRounding<NameFloor, _MM_FROUND_FLOOR> FunctionFloor;
typedef FunctionRounding<NameCeil, _MM_FROUND_CEIL> FunctionCeil;
struct PositiveMonotonicity
{
static bool has() { return true; }
static IFunction::Monotonicity get(const Field & left, const Field & right)
{
return { true };
}
};
template <> struct FunctionUnaryArithmeticMonotonicity<NameRoundToExp2> : PositiveMonotonicity {};
template <> struct FunctionUnaryArithmeticMonotonicity<NameRoundDuration> : PositiveMonotonicity {};
template <> struct FunctionUnaryArithmeticMonotonicity<NameRoundAge> : PositiveMonotonicity {};
}