ClickHouse/src/Functions/widthBucket.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

292 lines
11 KiB
C++
Raw Normal View History

2023-02-23 21:40:22 +00:00
#include <Columns/ColumnConst.h>
2023-02-23 18:30:21 +00:00
#include <Columns/ColumnVector.h>
#include <Core/ColumnWithTypeAndName.h>
#include <Core/ColumnsWithTypeAndName.h>
#include <Core/Types.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/IDataType.h>
#include <DataTypes/NumberTraits.h>
#include <Functions/FunctionFactory.h>
2023-02-23 21:40:22 +00:00
#include <Functions/FunctionHelpers.h>
2023-02-23 18:30:21 +00:00
#include <Functions/IFunction.h>
#include <Interpreters/Context.h>
#include <Interpreters/castColumn.h>
2023-04-05 12:25:51 +00:00
#include <Common/Concepts.h>
2023-02-24 20:21:49 +00:00
#include <Common/Exception.h>
#include <Common/NaNUtils.h>
2023-02-23 18:30:21 +00:00
#include <Common/register_objects.h>
#include <algorithm>
#include <iterator>
#include <memory>
2023-02-24 20:21:49 +00:00
#include <optional>
2023-02-23 18:30:21 +00:00
#include <string>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
2023-02-23 23:41:43 +00:00
extern const int BAD_ARGUMENTS;
2023-02-24 20:51:52 +00:00
extern const int LOGICAL_ERROR;
2023-02-23 18:30:21 +00:00
}
class FunctionWidthBucket : public IFunction
{
template <typename TDataType>
2023-02-24 20:21:49 +00:00
void throwIfInvalid(
const size_t argument_index,
const ColumnConst * col_const,
const typename ColumnVector<TDataType>::Container * col_vec,
const size_t expected_size) const
{
if ((nullptr == col_const) ^ (nullptr != col_vec && col_vec->size() == expected_size))
{
throw Exception(
2023-02-24 20:21:49 +00:00
ErrorCodes::LOGICAL_ERROR,
"Logical error in function {}: argument {} has unexpected type or size!",
getName(),
argument_index);
}
}
2023-02-23 21:40:22 +00:00
template <typename TDataType>
2023-02-23 23:41:43 +00:00
const typename ColumnVector<TDataType>::Container * getDataIfNotNull(const ColumnVector<TDataType> * col_vec) const
2023-02-23 21:40:22 +00:00
{
if (nullptr == col_vec)
{
return nullptr;
}
return &col_vec->getData();
}
template <typename TDataType>
static TDataType
getValue(const ColumnConst * col_const, const typename ColumnVector<TDataType>::Container * col_vec, const size_t index)
{
if (nullptr != col_const)
{
return col_const->getValue<TDataType>();
}
return col_vec->data()[index];
}
2023-02-24 20:21:49 +00:00
static Float64 calculateRelativeBucket(const Float64 operand, const Float64 low, const Float64 high)
{
return (operand - low) / (high - low);
}
2023-02-23 21:40:22 +00:00
template <typename TResultType, typename TCountType>
2023-02-24 20:21:49 +00:00
std::optional<TResultType> checkArguments(const Float64 operand, const Float64 low, const Float64 high, const TCountType count) const
2023-02-23 21:40:22 +00:00
{
2023-02-23 23:41:43 +00:00
if (count == 0)
{
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Last argument (count) for function {} cannot be 0.", getName());
}
2023-02-24 20:21:49 +00:00
if (isNaN(operand) || isNaN(low) || isNaN(high))
{
throw Exception(
ErrorCodes::BAD_ARGUMENTS, "The first three arguments (operand, low, high) cannot be NaN in function {}", getName());
}
// operand can be infinity, the following conditions will take care of it
if (!isFinite(low) || !isFinite(high))
{
throw Exception(ErrorCodes::BAD_ARGUMENTS, "The second and third arguments (low, high) cannot be Inf function {}", getName());
}
2023-02-24 00:04:47 +00:00
if (operand < low || low >= high)
2023-02-23 21:40:22 +00:00
{
return 0;
}
2023-02-24 00:04:47 +00:00
else if (operand >= high)
2023-02-23 21:40:22 +00:00
{
return count + 1;
}
2023-02-24 20:21:49 +00:00
return std::nullopt;
}
2023-02-23 21:40:22 +00:00
2023-02-24 20:21:49 +00:00
template <typename TResultType, typename TCountType>
TResultType NO_SANITIZE_UNDEFINED calculate(const Float64 operand, const Float64 low, const Float64 high, const TCountType count) const
2023-02-24 20:21:49 +00:00
{
if (const auto maybe_early_return = checkArguments<TResultType>(operand, low, high, count); maybe_early_return.has_value())
{
return *maybe_early_return;
}
const auto relative_bucket = calculateRelativeBucket(operand, low, high);
if (isNaN(relative_bucket) || !isFinite(relative_bucket))
{
throw Exception(
ErrorCodes::LOGICAL_ERROR, "The calculation resulted in NaN or Inf which is unexpected in function {}.", getName());
}
return static_cast<TResultType>(count * relative_bucket + 1);
2023-02-23 21:40:22 +00:00
}
template <is_any_of<UInt8, UInt16, UInt32, UInt64> TCountType>
2023-02-23 23:41:43 +00:00
ColumnPtr executeForResultType(const ColumnsWithTypeAndName & arguments, size_t input_rows_count) const
2023-02-23 18:30:21 +00:00
{
2023-02-23 21:40:22 +00:00
using ResultType = typename NumberTraits::Construct<false, false, NumberTraits::nextSize(sizeof(TCountType))>::Type;
2023-02-23 18:30:21 +00:00
auto common_type = std::make_shared<DataTypeNumber<Float64>>();
std::vector<ColumnPtr> casted_columns;
casted_columns.reserve(3);
2023-02-23 21:40:22 +00:00
for (const auto argument_index : collections::range(0, 3))
2023-02-23 18:30:21 +00:00
{
2023-02-23 21:40:22 +00:00
casted_columns.push_back(castColumn(arguments[argument_index], common_type));
2023-02-23 18:30:21 +00:00
}
2023-02-23 21:40:22 +00:00
const auto * operands_vec = getDataIfNotNull(checkAndGetColumn<ColumnVector<Float64>>(casted_columns[0].get()));
2023-02-24 00:04:47 +00:00
const auto * lows_vec = getDataIfNotNull(checkAndGetColumn<ColumnVector<Float64>>(casted_columns[1].get()));
const auto * highs_vec = getDataIfNotNull(checkAndGetColumn<ColumnVector<Float64>>(casted_columns[2].get()));
2023-02-23 21:40:22 +00:00
const auto * counts_vec = getDataIfNotNull(checkAndGetColumn<ColumnVector<TCountType>>(arguments[3].column.get()));
const auto * operands_col_const = checkAndGetColumnConst<ColumnVector<Float64>>(casted_columns[0].get());
2023-02-24 00:04:47 +00:00
const auto * lows_col_const = checkAndGetColumnConst<ColumnVector<Float64>>(casted_columns[1].get());
const auto * highs_col_const = checkAndGetColumnConst<ColumnVector<Float64>>(casted_columns[2].get());
2023-02-23 21:40:22 +00:00
const auto * counts_col_const = checkAndGetColumnConst<ColumnVector<TCountType>>(arguments[3].column.get());
throwIfInvalid<Float64>(0, operands_col_const, operands_vec, input_rows_count);
throwIfInvalid<Float64>(1, lows_col_const, lows_vec, input_rows_count);
throwIfInvalid<Float64>(2, highs_col_const, highs_vec, input_rows_count);
throwIfInvalid<TCountType>(4, counts_col_const, counts_vec, input_rows_count);
2023-02-23 18:30:21 +00:00
2023-02-23 21:40:22 +00:00
const auto are_all_const_cols
2023-02-24 00:04:47 +00:00
= nullptr != operands_col_const && nullptr != lows_col_const && nullptr != highs_col_const && nullptr != counts_col_const;
2023-02-23 21:40:22 +00:00
if (are_all_const_cols)
2023-02-23 18:30:21 +00:00
{
2023-02-24 19:33:34 +00:00
throw Exception(
ErrorCodes::LOGICAL_ERROR, "Logical error in function {}: unexpected combination of argument types!", getName());
2023-02-23 21:40:22 +00:00
}
auto result_column = ColumnVector<ResultType>::create();
result_column->reserve(1);
auto & result_data = result_column->getData();
for (const auto row_index : collections::range(0, input_rows_count))
{
const auto operand = getValue<Float64>(operands_col_const, operands_vec, row_index);
2023-02-24 00:04:47 +00:00
const auto low = getValue<Float64>(lows_col_const, lows_vec, row_index);
const auto high = getValue<Float64>(highs_col_const, highs_vec, row_index);
2023-02-23 21:40:22 +00:00
const auto count = getValue<TCountType>(counts_col_const, counts_vec, row_index);
2023-02-24 00:04:47 +00:00
result_data.push_back(calculate<ResultType>(operand, low, high, count));
2023-02-23 18:30:21 +00:00
}
return result_column;
}
public:
static inline const char * name = "widthBucket";
2023-02-23 18:30:21 +00:00
explicit FunctionWidthBucket() = default;
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionWidthBucket>(); }
String getName() const override { return name; }
size_t getNumberOfArguments() const override { return 4; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
for (const auto argument_index : collections::range(0, 3))
2023-02-23 18:30:21 +00:00
{
2023-02-23 21:40:22 +00:00
if (!isNativeNumber(arguments[argument_index]))
2023-02-23 18:30:21 +00:00
{
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
2023-02-23 21:40:22 +00:00
"The first three arguments of function {} must be a Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Float32 "
"or Float64.",
2023-02-23 18:30:21 +00:00
getName());
}
}
2023-02-24 10:39:39 +00:00
if (!WhichDataType(arguments[3]).isNativeUInt())
2023-02-23 18:30:21 +00:00
{
throw Exception(
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
"The last argument of function {} must be UInt8, UInt16, UInt32 or UInt64, found {}.",
getName(),
arguments[3]->getName());
}
switch (arguments[3]->getTypeId())
{
case TypeIndex::UInt8:
return std::make_shared<DataTypeUInt16>();
case TypeIndex::UInt16:
return std::make_shared<DataTypeUInt32>();
case TypeIndex::UInt32:
[[fallthrough]];
case TypeIndex::UInt64:
return std::make_shared<DataTypeUInt64>();
default:
break;
}
UNREACHABLE();
}
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
2023-02-23 21:40:22 +00:00
ColumnPtr
executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & /*result_type*/, size_t input_rows_count) const override
2023-02-23 18:30:21 +00:00
{
2023-02-23 21:40:22 +00:00
switch (arguments[3].type->getTypeId())
2023-02-23 18:30:21 +00:00
{
case TypeIndex::UInt8:
return executeForResultType<UInt8>(arguments, input_rows_count);
case TypeIndex::UInt16:
return executeForResultType<UInt16>(arguments, input_rows_count);
case TypeIndex::UInt32:
return executeForResultType<UInt32>(arguments, input_rows_count);
case TypeIndex::UInt64:
return executeForResultType<UInt64>(arguments, input_rows_count);
default:
break;
}
UNREACHABLE();
}
bool useDefaultImplementationForConstants() const override { return true; }
};
REGISTER_FUNCTION(WidthBucket)
{
factory.registerFunction<FunctionWidthBucket>({
R"(
Returns the number of the bucket in which `operand` falls in a histogram having `count` equal-width buckets spanning the range `low` to `high`. Returns `0` if `operand < low`, and returns `count+1` if `operand >= high`.
`operand`, `low`, `high` can be any native number type. `count` can only be unsigned native integer and its value cannot be zero.
**Syntax**
```sql
widthBucket(operand, low, high, count)
```
There is also a case insensitive alias called `WIDTH_BUCKET` to provide compatibility with other databases.
**Example**
Query:
[example:simple]
Result:
``` text
widthBucket(10.15, -8.6, 23, 18)
11
```
)",
Documentation::Examples{
{"simple", "SELECT widthBucket(10.15, -8.6, 23, 18)"},
},
Documentation::Categories{"Mathematical"},
});
factory.registerAlias("width_bucket", "widthBucket", FunctionFactory::CaseInsensitive);
2023-02-23 18:30:21 +00:00
}
}