2019-09-03 14:23:51 +00:00
# hdfs
2019-09-20 11:26:00 +00:00
Creates a table from files in HDFS. This table function is similar to [url ](url.md ) and [file ](file.md ) ones.
2019-09-03 14:23:51 +00:00
2019-09-23 15:31:46 +00:00
```sql
2019-09-03 14:23:51 +00:00
hdfs(URI, format, structure)
```
**Input parameters**
2019-09-04 11:11:30 +00:00
- `URI` — The relative URI to the file in HDFS. Path to file support following globs in readonly mode: `*` , `?` , `{abc,def}` and `{N..M}` where `N` , `M` — numbers, ``'abc', 'def'` — strings.
2019-09-03 14:23:51 +00:00
- `format` — The [format ](../../interfaces/formats.md#formats ) of the file.
- `structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'` .
**Returned value**
A table with the specified structure for reading or writing data in the specified file.
**Example**
Table from `hdfs://hdfs1:9000/test` and selection of the first two rows from it:
```sql
SELECT *
FROM hdfs('hdfs://hdfs1:9000/test', 'TSV', 'column1 UInt32, column2 UInt32, column3 UInt32')
LIMIT 2
```
2019-09-23 15:31:46 +00:00
```text
2019-09-03 14:23:51 +00:00
┌─column1─┬─column2─┬─column3─┐
│ 1 │ 2 │ 3 │
│ 3 │ 2 │ 1 │
└─────────┴─────────┴─────────┘
```
2019-09-04 11:11:30 +00:00
**Globs in path**
2019-09-20 11:26:00 +00:00
Multiple path components can have globs. For being processed file should exists and matches to the whole path pattern (not only suffix or prefix).
2019-09-23 15:12:43 +00:00
- `*` — Substitutes any number of any characters except `/` including empty string.
2019-09-20 11:26:00 +00:00
- `?` — Substitutes any single character.
- `{some_string,another_string,yet_another_one}` — Substitutes any of strings `'some_string', 'another_string', 'yet_another_one'` .
- `{N..M}` — Substitutes any number in range from N to M including both borders.
Constructions with `{}` are similar to the [remote table function ](../../query_language/table_functions/remote.md )).
**Example**
1. Suppose that we have several files with following URIs on HDFS:
- 'hdfs://hdfs1:9000/some_dir/some_file_1'
- 'hdfs://hdfs1:9000/some_dir/some_file_2'
- 'hdfs://hdfs1:9000/some_dir/some_file_3'
- 'hdfs://hdfs1:9000/another_dir/some_file_1'
- 'hdfs://hdfs1:9000/another_dir/some_file_2'
- 'hdfs://hdfs1:9000/another_dir/some_file_3'
2. Query the amount of rows in these files:
```sql
SELECT count(*)
FROM hdfs('hdfs://hdfs1:9000/{some,another}_dir/some_file_{1..3}', 'TSV', 'name String, value UInt32')
```
3. Query the amount of rows in all files of these two directories:
```sql
SELECT count(*)
FROM hdfs('hdfs://hdfs1:9000/{some,another}_dir/*', 'TSV', 'name String, value UInt32')
```
2019-09-04 11:11:30 +00:00
!!! warning
If your listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?` .
2019-09-20 11:26:00 +00:00
**Example**
Query the data from files named `file000` , `file001` , ... , `file999` :
```sql
SELECT count(*)
FROM hdfs('hdfs://hdfs1:9000/big_dir/file{0..9}{0..9}{0..9}', 'CSV', 'name String, value UInt32')
```
2019-09-04 11:11:30 +00:00
2019-09-03 14:23:51 +00:00
[Original article ](https://clickhouse.yandex/docs/en/query_language/table_functions/hdfs/ ) <!--hide-->