ClickHouse/dbms/src/Columns/ColumnTuple.cpp

310 lines
8.5 KiB
C++
Raw Normal View History

#include <Columns/ColumnTuple.h>
2017-06-06 17:18:32 +00:00
#include <ext/map.h>
#include <ext/range.h>
#include <DataStreams/ColumnGathererStream.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_COLUMN;
extern const int NOT_IMPLEMENTED;
extern const int CANNOT_INSERT_VALUE_OF_DIFFERENT_SIZE_INTO_TUPLE;
}
std::string ColumnTuple::getName() const
{
std::stringstream res;
res << "Tuple(";
bool is_first = true;
for (const auto & column : columns)
{
if (!is_first)
res << ", ";
is_first = false;
res << column->getName();
}
res << ")";
return res.str();
}
ColumnTuple::ColumnTuple(const Columns & columns) : columns(columns)
{
for (const auto & column : columns)
if (column->isColumnConst())
throw Exception{"ColumnTuple cannot have ColumnConst as its element", ErrorCodes::ILLEGAL_COLUMN};
}
ColumnPtr ColumnTuple::cloneEmpty() const
{
const size_t tuple_size = columns.size();
Columns new_columns(tuple_size);
for (size_t i = 0; i < tuple_size; ++i)
new_columns[i] = columns[i]->cloneEmpty();
return ColumnTuple::create(new_columns);
}
Field ColumnTuple::operator[](size_t n) const
{
return Tuple{ext::map<TupleBackend>(columns, [n] (const auto & column) { return (*column)[n]; })};
}
void ColumnTuple::get(size_t n, Field & res) const
{
const size_t tuple_size = columns.size();
res = Tuple(TupleBackend(tuple_size));
TupleBackend & res_arr = DB::get<Tuple &>(res).t;
for (const auto i : ext::range(0, tuple_size))
columns[i]->get(n, res_arr[i]);
}
2017-12-01 21:13:25 +00:00
StringRef ColumnTuple::getDataAt(size_t) const
{
throw Exception("Method getDataAt is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED);
}
2017-12-01 21:13:25 +00:00
void ColumnTuple::insertData(const char *, size_t)
{
throw Exception("Method insertData is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED);
}
void ColumnTuple::insert(const Field & x)
{
const TupleBackend & tuple = DB::get<const Tuple &>(x).t;
const size_t tuple_size = columns.size();
if (tuple.size() != tuple_size)
throw Exception("Cannot insert value of different size into tuple", ErrorCodes::CANNOT_INSERT_VALUE_OF_DIFFERENT_SIZE_INTO_TUPLE);
for (size_t i = 0; i < tuple_size; ++i)
columns[i]->insert(tuple[i]);
}
void ColumnTuple::insertFrom(const IColumn & src_, size_t n)
{
const ColumnTuple & src = static_cast<const ColumnTuple &>(src_);
const size_t tuple_size = columns.size();
if (src.columns.size() != tuple_size)
throw Exception("Cannot insert value of different size into tuple", ErrorCodes::CANNOT_INSERT_VALUE_OF_DIFFERENT_SIZE_INTO_TUPLE);
for (size_t i = 0; i < tuple_size; ++i)
columns[i]->insertFrom(*src.columns[i], n);
}
void ColumnTuple::insertDefault()
{
for (auto & column : columns)
column->insertDefault();
}
void ColumnTuple::popBack(size_t n)
{
for (auto & column : columns)
column->popBack(n);
}
StringRef ColumnTuple::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const
{
size_t values_size = 0;
for (auto & column : columns)
values_size += column->serializeValueIntoArena(n, arena, begin).size;
return StringRef(begin, values_size);
}
const char * ColumnTuple::deserializeAndInsertFromArena(const char * pos)
{
for (auto & column : columns)
pos = column->deserializeAndInsertFromArena(pos);
return pos;
}
void ColumnTuple::updateHashWithValue(size_t n, SipHash & hash) const
{
for (auto & column : columns)
column->updateHashWithValue(n, hash);
}
void ColumnTuple::insertRangeFrom(const IColumn & src, size_t start, size_t length)
{
const size_t tuple_size = columns.size();
for (size_t i = 0; i < tuple_size; ++i)
columns[i]->insertRangeFrom(
*static_cast<const ColumnTuple &>(src).columns[i],
start, length);
}
ColumnPtr ColumnTuple::filter(const Filter & filt, ssize_t result_size_hint) const
{
const size_t tuple_size = columns.size();
Columns new_columns(tuple_size);
for (size_t i = 0; i < tuple_size; ++i)
new_columns[i] = columns[i]->filter(filt, result_size_hint);
return ColumnTuple::create(new_columns);
}
ColumnPtr ColumnTuple::permute(const Permutation & perm, size_t limit) const
{
const size_t tuple_size = columns.size();
Columns new_columns(tuple_size);
for (size_t i = 0; i < tuple_size; ++i)
new_columns[i] = columns[i]->permute(perm, limit);
return ColumnTuple::create(new_columns);
}
ColumnPtr ColumnTuple::replicate(const Offsets_t & offsets) const
{
const size_t tuple_size = columns.size();
Columns new_columns(tuple_size);
for (size_t i = 0; i < tuple_size; ++i)
new_columns[i] = columns[i]->replicate(offsets);
return ColumnTuple::create(new_columns);
}
Columns ColumnTuple::scatter(ColumnIndex num_columns, const Selector & selector) const
{
const size_t tuple_size = columns.size();
std::vector<Columns> scattered_tuple_elements(tuple_size);
for (size_t tuple_element_idx = 0; tuple_element_idx < tuple_size; ++tuple_element_idx)
scattered_tuple_elements[tuple_element_idx] = columns[tuple_element_idx]->scatter(num_columns, selector);
Columns res(num_columns);
for (size_t scattered_idx = 0; scattered_idx < num_columns; ++scattered_idx)
{
Columns new_columns(tuple_size);
for (size_t tuple_element_idx = 0; tuple_element_idx < tuple_size; ++tuple_element_idx)
new_columns[tuple_element_idx] = scattered_tuple_elements[tuple_element_idx][scattered_idx];
res[scattered_idx] = ColumnTuple::create(new_columns);
}
return res;
}
int ColumnTuple::compareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const
{
const size_t tuple_size = columns.size();
for (size_t i = 0; i < tuple_size; ++i)
if (int res = columns[i]->compareAt(n, m, *static_cast<const ColumnTuple &>(rhs).columns[i], nan_direction_hint))
return res;
return 0;
}
template <bool positive>
struct ColumnTuple::Less
{
ColumnRawPtrs plain_columns;
int nan_direction_hint;
Less(const Columns & columns, int nan_direction_hint_)
: nan_direction_hint(nan_direction_hint_)
{
for (const auto & column : columns)
plain_columns.push_back(column.get());
}
bool operator() (size_t a, size_t b) const
{
for (ColumnRawPtrs::const_iterator it = plain_columns.begin(); it != plain_columns.end(); ++it)
{
int res = (*it)->compareAt(a, b, **it, nan_direction_hint);
if (res < 0)
return positive;
else if (res > 0)
return !positive;
}
return false;
}
};
void ColumnTuple::getPermutation(bool reverse, size_t limit, int nan_direction_hint, Permutation & res) const
{
size_t rows = size();
res.resize(rows);
for (size_t i = 0; i < rows; ++i)
res[i] = i;
if (limit >= rows)
limit = 0;
if (limit)
{
if (reverse)
std::partial_sort(res.begin(), res.begin() + limit, res.end(), Less<false>(columns, nan_direction_hint));
else
std::partial_sort(res.begin(), res.begin() + limit, res.end(), Less<true>(columns, nan_direction_hint));
}
else
{
if (reverse)
std::sort(res.begin(), res.end(), Less<false>(columns, nan_direction_hint));
else
std::sort(res.begin(), res.end(), Less<true>(columns, nan_direction_hint));
}
}
void ColumnTuple::gather(ColumnGathererStream & gatherer)
{
gatherer.gather(*this);
}
void ColumnTuple::reserve(size_t n)
{
for (auto & column : columns)
column->reserve(n);
}
size_t ColumnTuple::byteSize() const
{
size_t res = 0;
for (const auto & column : columns)
res += column->byteSize();
return res;
}
size_t ColumnTuple::allocatedBytes() const
{
size_t res = 0;
for (const auto & column : columns)
res += column->allocatedBytes();
return res;
}
void ColumnTuple::getExtremes(Field & min, Field & max) const
{
const size_t tuple_size = columns.size();
min = Tuple(TupleBackend(tuple_size));
max = Tuple(TupleBackend(tuple_size));
auto & min_backend = min.get<Tuple &>().t;
auto & max_backend = max.get<Tuple &>().t;
for (const auto i : ext::range(0, tuple_size))
columns[i]->getExtremes(min_backend[i], max_backend[i]);
}
void ColumnTuple::forEachSubcolumn(ColumnCallback callback)
{
for (auto & column : columns)
callback(column);
}
}