2020-03-22 09:14:59 +00:00
# Параметрические агрегатные функции {#aggregate_functions_parametric}
2017-10-25 05:27:09 +00:00
Некоторые агрегатные функции могут принимать не только столбцы-аргументы (по которым производится свёртка), но и набор параметров - констант для инициализации. Синтаксис - две пары круглых скобок вместо одной. Первая - для параметров, вторая - для аргументов.
2020-03-20 18:20:59 +00:00
## histogram {#histogram}
2019-09-23 23:59:49 +00:00
Рассчитывает адаптивную гистограмму. Н е гарантирует точного результата.
2020-03-21 04:11:51 +00:00
histogram(number_of_bins)(values)
2020-03-20 18:20:59 +00:00
2019-09-23 23:59:49 +00:00
Функция использует [A Streaming Parallel Decision Tree Algorithm ](http://jmlr.org/papers/volume11/ben-haim10a/ben-haim10a.pdf ). Границы столбцов устанавливаются по мере поступления новых данных в функцию. В общем случае столбцы имею разную ширину.
**Параметры**
`number_of_bins` — максимальное количество корзин в гистограмме. Функция автоматически вычисляет количество корзин. Она пытается получить указанное количество корзин, но если не получилось, то в результате корзин будет меньше.
`values` — [выражение ](../syntax.md#syntax-expressions ), предоставляющее входные значения.
**Возвращаемые значения**
2020-03-21 04:11:51 +00:00
- [Массив ](../../data_types/array.md ) [кортежей ](../../data_types/tuple.md ) следующего вида:
2019-09-23 23:59:49 +00:00
2020-03-21 04:11:51 +00:00
```
[(lower_1, upper_1, height_1), ... (lower_N, upper_N, height_N)]
```
2019-09-23 23:59:49 +00:00
2020-03-21 04:11:51 +00:00
- `lower` — нижняя граница корзины.
- `upper` — верхняя граница корзины.
- `height` — количество значений в корзине.
2019-09-23 23:59:49 +00:00
**Пример**
2020-03-20 18:20:59 +00:00
``` sql
SELECT histogram(5)(number + 1)
2019-09-23 23:59:49 +00:00
FROM (
2020-03-20 18:20:59 +00:00
SELECT *
FROM system.numbers
2019-09-23 23:59:49 +00:00
LIMIT 20
)
```
2020-03-20 18:20:59 +00:00
``` text
2019-09-23 23:59:49 +00:00
┌─histogram(5)(plus(number, 1))───────────────────────────────────────────┐
│ [(1,4.5,4),(4.5,8.5,4),(8.5,12.75,4.125),(12.75,17,4.625),(17,20,3.25)] │
└─────────────────────────────────────────────────────────────────────────┘
```
2019-09-25 16:43:10 +00:00
С помощью функции [bar ](../functions/other_functions.md#function-bar ) можно визуализировать гистограмму, например:
2019-09-23 23:59:49 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2019-09-23 23:59:49 +00:00
WITH histogram(5)(rand() % 100) AS hist
2020-03-20 18:20:59 +00:00
SELECT
arrayJoin(hist).3 AS height,
2019-09-23 23:59:49 +00:00
bar(height, 0, 6, 5) AS bar
2020-03-20 18:20:59 +00:00
FROM
2019-09-23 23:59:49 +00:00
(
SELECT *
FROM system.numbers
LIMIT 20
)
```
2020-03-20 18:20:59 +00:00
``` text
2019-09-23 23:59:49 +00:00
┌─height─┬─bar───┐
│ 2.125 │ █▋ │
│ 3.25 │ ██▌ │
│ 5.625 │ ████▏ │
│ 5.625 │ ████▏ │
│ 3.375 │ ██▌ │
└────────┴───────┘
```
В этом случае необходимо помнить, что границы корзин гистограммы не известны.
2020-03-20 18:20:59 +00:00
## sequenceMatch(pattern)(timestamp, cond1, cond2, …) {#function-sequencematch}
2017-10-25 05:27:09 +00:00
2019-11-03 16:39:08 +00:00
Проверяет, содержит ли последовательность событий цепочку, которая соответствует указанному шаблону.
2017-10-25 05:27:09 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2019-10-17 13:47:19 +00:00
sequenceMatch(pattern)(timestamp, cond1, cond2, ...)
```
!!! warning "Предупреждение"
События, произошедшие в одну и ту же секунду, располагаются в последовательности в неопределенном порядке, что может повлиять на результат работы функции.
**Параметры**
2020-03-21 04:11:51 +00:00
- `pattern` — строка с шаблоном. Смотрите [Синтаксис шаблонов ](#sequence-function-pattern-syntax ).
2019-10-17 13:47:19 +00:00
2020-03-21 04:11:51 +00:00
- `timestamp` — столбец, содержащий метки времени. Типичный тип данных столбца — `Date` или `DateTime` . Также можно использовать любой из поддержанных типов данных [UInt ](../../data_types/int_uint.md ).
2019-10-17 13:47:19 +00:00
2020-03-21 04:11:51 +00:00
- `cond1` , `cond2` — условия, описывающие цепочку событий. Тип данных — `UInt8` . Можно использовать до 32 условий. Функция учитывает только те события, которые указаны в условиях. Функция пропускает данные из последовательности, если они не описаны ни в одном из условий.
2019-10-17 13:47:19 +00:00
**Возвращаемые значения**
2020-03-21 04:11:51 +00:00
- 1, если цепочка событий, соответствующая шаблону найдена.
- 0, если цепочка событий, соответствующая шаблону не найдена.
2019-10-17 13:47:19 +00:00
Тип: `UInt8` .
< a name = "sequence-function-pattern-syntax" > < / a >
**Синтаксис шаблонов**
2020-03-21 04:11:51 +00:00
- `(?N)` — соответствует условию на позиции `N` . Условия пронумерованы по порядку в диапазоне `[1, 32]` . Например, `(?1)` соответствует условию, заданному параметром `cond1` .
2019-10-17 13:47:19 +00:00
2020-03-21 04:11:51 +00:00
- `.*` — соответствует любому количеству событий. Для этого элемента шаблона не надо задавать условия.
2019-10-17 13:47:19 +00:00
2020-03-21 04:11:51 +00:00
- `(?t operator value)` — устанавливает время в секундах, которое должно разделять два события. Например, шаблон `(?1)(?t>1800)(?2)` соответствует событиям, которые произошли более чем через 1800 секунд друг от друга. Между этими событиями может находиться произвольное количество любых событий. Операторы могут быть `>=` , `>` , `<` , `<=` .
2019-10-17 13:47:19 +00:00
**Примеры**
Пусть таблица `t` содержит следующие данные:
2020-03-20 18:20:59 +00:00
``` text
2019-10-17 13:47:19 +00:00
┌─time─┬─number─┐
│ 1 │ 1 │
│ 2 │ 3 │
│ 3 │ 2 │
└──────┴────────┘
```
Выполним запрос:
2020-03-20 18:20:59 +00:00
``` sql
2019-10-17 13:47:19 +00:00
SELECT sequenceMatch('(?1)(?2)')(time, number = 1, number = 2) FROM t
```
2020-03-20 18:20:59 +00:00
``` text
2019-10-17 13:47:19 +00:00
┌─sequenceMatch('(?1)(?2)')(time, equals(number, 1), equals(number, 2))─┐
│ 1 │
└───────────────────────────────────────────────────────────────────────┘
```
2019-11-03 16:39:39 +00:00
Функция нашла цепочку событий, в которой число 2 следует за числом 1. Число 3 между ними было пропущено, поскольку оно не было использовано ни в одном из условий.
2019-10-17 13:47:19 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2019-10-17 13:47:19 +00:00
SELECT sequenceMatch('(?1)(?2)')(time, number = 1, number = 2, number = 3) FROM t
```
2020-03-20 18:20:59 +00:00
``` text
2019-10-17 13:47:19 +00:00
┌─sequenceMatch('(?1)(?2)')(time, equals(number, 1), equals(number, 2), equals(number, 3))─┐
│ 0 │
└──────────────────────────────────────────────────────────────────────────────────────────┘
```
В этом случае функция не может найти цепочку событий, соответствующую шаблону, поскольку событие для числа 3 произошло между 1 и 2. Если бы в этом же случае мы бы проверяли условие на событие для числа 4, то цепочка бы соответствовала шаблону.
2020-03-20 18:20:59 +00:00
``` sql
2019-10-17 13:47:19 +00:00
SELECT sequenceMatch('(?1)(?2)')(time, number = 1, number = 2, number = 4) FROM t
```
2020-03-20 18:20:59 +00:00
``` text
2019-10-17 13:47:19 +00:00
┌─sequenceMatch('(?1)(?2)')(time, equals(number, 1), equals(number, 2), equals(number, 4))─┐
│ 1 │
└──────────────────────────────────────────────────────────────────────────────────────────┘
```
2017-10-25 05:27:09 +00:00
2019-10-17 13:47:19 +00:00
**Смотрите также**
2017-10-25 05:27:09 +00:00
2020-03-21 04:11:51 +00:00
- [sequenceCount ](#function-sequencecount )
2017-10-25 05:27:09 +00:00
2020-03-20 18:20:59 +00:00
## sequenceCount(pattern)(time, cond1, cond2, …) {#function-sequencecount}
2017-10-25 05:27:09 +00:00
2019-11-03 16:40:06 +00:00
Вычисляет количество цепочек событий, соответствующих шаблону. Функция обнаруживает только непересекающиеся цепочки событий. Она начитает искать следующую цепочку только после того, как полностью совпала текущая цепочка событий.
2019-10-17 13:47:19 +00:00
!!! warning "Предупреждение"
События, произошедшие в одну и ту же секунду, располагаются в последовательности в неопределенном порядке, что может повлиять на результат работы функции.
2017-10-25 05:27:09 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2019-10-17 13:47:19 +00:00
sequenceCount(pattern)(timestamp, cond1, cond2, ...)
2017-10-25 05:27:09 +00:00
```
2019-10-17 13:47:19 +00:00
**Параметры**
2020-03-21 04:11:51 +00:00
- `pattern` — строка с шаблоном. Смотрите [Синтаксис шаблонов ](#sequence-function-pattern-syntax ).
2017-10-25 05:27:09 +00:00
2020-03-21 04:11:51 +00:00
- `timestamp` — столбец, содержащий метки времени. Типичный тип данных столбца — `Date` или `DateTime` . Также можно использовать любой из поддержанных типов данных [UInt ](../../data_types/int_uint.md ).
2017-10-25 05:27:09 +00:00
2020-03-21 04:11:51 +00:00
- `cond1` , `cond2` — условия, описывающие цепочку событий. Тип данных — `UInt8` . Можно использовать до 32 условий. Функция учитывает только те события, которые указаны в условиях. Функция пропускает данные из последовательности, если они не описаны ни в одном из условий.
2017-10-25 05:27:09 +00:00
2019-10-17 13:47:19 +00:00
**Возвращаемое значение**
2017-10-25 05:27:09 +00:00
2020-03-21 04:11:51 +00:00
- Число непересекающихся цепочек событий, соответствущих шаблону.
2017-10-25 05:27:09 +00:00
2019-10-17 13:47:19 +00:00
Тип: `UInt64` .
2017-10-25 05:27:09 +00:00
2019-10-17 13:47:19 +00:00
**Пример**
2017-10-25 05:27:09 +00:00
2019-10-17 13:47:19 +00:00
Пусть таблица `t` содержит следующие данные:
2020-03-20 18:20:59 +00:00
``` text
2019-10-17 13:47:19 +00:00
┌─time─┬─number─┐
│ 1 │ 1 │
│ 2 │ 3 │
│ 3 │ 2 │
│ 4 │ 1 │
│ 5 │ 3 │
│ 6 │ 2 │
└──────┴────────┘
```
2017-10-25 05:27:09 +00:00
2019-10-17 13:47:19 +00:00
Вычислим сколько раз число 2 стоит после числа 1, причем между 1 и 2 могут быть любые числа:
2020-03-20 18:20:59 +00:00
``` sql
2019-10-17 13:47:19 +00:00
SELECT sequenceCount('(?1).*(?2)')(time, number = 1, number = 2) FROM t
```
2020-03-20 18:20:59 +00:00
``` text
2019-10-17 13:47:19 +00:00
┌─sequenceCount('(?1).*(?2)')(time, equals(number, 1), equals(number, 2))─┐
│ 2 │
└─────────────────────────────────────────────────────────────────────────┘
```
2017-10-25 05:27:09 +00:00
2019-10-17 13:47:19 +00:00
**Смотрите также**
2017-10-25 05:27:09 +00:00
2020-03-21 04:11:51 +00:00
- [sequenceMatch ](#function-sequencematch )
2017-10-25 05:27:09 +00:00
2019-12-25 20:55:07 +00:00
## windowFunnel {#windowfunnel}
2018-08-01 09:21:12 +00:00
Отыскивает цепочки событий в скользящем окне по времени и вычисляет максимальное количество произошедших событий из цепочки.
2019-12-25 20:55:07 +00:00
Функция работает по алгоритму:
2020-03-21 04:11:51 +00:00
- Функция отыскивает данные, на которых срабатывает первое условие из цепочки, и присваивает счетчику событий значение 1. С этого же момента начинается отсчет времени скользящего окна.
2019-12-25 20:55:07 +00:00
2020-03-21 04:11:51 +00:00
- Если в пределах окна последовательно попадаются события из цепочки, то счетчик увеличивается. Если последовательность событий нарушается, то счетчик не растет.
2019-12-25 20:55:07 +00:00
2020-03-21 04:11:51 +00:00
- Если в данных оказалось несколько цепочек разной степени завершенности, то функция выдаст только размер самой длинной цепочки.
2019-12-25 20:55:07 +00:00
**Синтаксис**
2018-08-01 09:21:12 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2019-12-25 20:55:07 +00:00
windowFunnel(window, [mode])(timestamp, cond1, cond2, ..., condN)
2018-08-01 09:21:12 +00:00
```
**Параметры**
2020-03-21 04:11:51 +00:00
- `window` — ширина скользящего окна по времени в секундах. [UInt ](../../data_types/int_uint.md ).
- `mode` - необязательный параметр. Если установлено значение `'strict'` , то функция `windowFunnel()` применяет условия только для уникальных значений.
- `timestamp` — имя столбца, содержащего временные отметки. [Date ](../../data_types/date.md ), [DateTime ](../../data_types/datetime.md#data_type-datetime ) и другие параметры с типом `Integer` . В случае хранения меток времени в столбцах с типом `UInt64` , максимально допустимое значение соответствует ограничению для типа `Int64` , т.е . равно `2^63-1` .
- `cond` — условия или данные, описывающие цепочку событий. [UInt8 ](../../data_types/int_uint.md ).
2018-08-01 09:21:12 +00:00
**Возвращаемое значение**
2019-12-25 20:55:07 +00:00
Максимальное количество последовательно сработавших условий из цепочки в пределах скользящего окна по времени. Исследуются все цепочки в выборке.
Тип: `Integer` .
2018-08-01 09:21:12 +00:00
**Пример**
2019-12-25 20:55:07 +00:00
Определим, успевает ли пользователь за установленный период выбрать телефон в интернет-магазине, купить е г о и сделать повторный заказ.
2018-08-01 09:21:12 +00:00
Зададим следующую цепочку событий:
2020-03-20 18:20:59 +00:00
1. Пользователь вошел в личный кабинет (`eventID = 1001`).
2. Пользователь ищет телефон (`eventID = 1003, product = 'phone'`).
3. Пользователь сделал заказ (`eventID = 1009`)
4. Пользователь сделал повторный заказ (`eventID = 1010`).
2019-12-25 20:55:07 +00:00
Входная таблица:
2018-08-01 09:21:12 +00:00
2020-03-20 18:20:59 +00:00
``` text
2019-12-25 20:55:07 +00:00
┌─event_date─┬─user_id─┬───────────timestamp─┬─eventID─┬─product─┐
│ 2019-01-28 │ 1 │ 2019-01-29 10:00:00 │ 1003 │ phone │
└────────────┴─────────┴─────────────────────┴─────────┴─────────┘
┌─event_date─┬─user_id─┬───────────timestamp─┬─eventID─┬─product─┐
│ 2019-01-31 │ 1 │ 2019-01-31 09:00:00 │ 1007 │ phone │
└────────────┴─────────┴─────────────────────┴─────────┴─────────┘
┌─event_date─┬─user_id─┬───────────timestamp─┬─eventID─┬─product─┐
│ 2019-01-30 │ 1 │ 2019-01-30 08:00:00 │ 1009 │ phone │
└────────────┴─────────┴─────────────────────┴─────────┴─────────┘
┌─event_date─┬─user_id─┬───────────timestamp─┬─eventID─┬─product─┐
│ 2019-02-01 │ 1 │ 2019-02-01 08:00:00 │ 1010 │ phone │
└────────────┴─────────┴─────────────────────┴─────────┴─────────┘
```
Сделаем запрос и узнаем, как далеко пользователь `user_id` смог пройти по цепочке за период в январе-феврале 2019-г о года.
Запрос:
2018-08-01 09:21:12 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2018-08-01 09:21:12 +00:00
SELECT
level,
count() AS c
FROM
(
SELECT
user_id,
2019-12-25 20:55:07 +00:00
windowFunnel(6048000000000000)(timestamp, eventID = 1003, eventID = 1009, eventID = 1007, eventID = 1010) AS level
FROM trend
WHERE (event_date >= '2019-01-01') AND (event_date < = '2019-02-02')
2018-08-01 09:21:12 +00:00
GROUP BY user_id
)
GROUP BY level
2019-12-25 20:55:07 +00:00
ORDER BY level ASC
2018-08-01 09:21:12 +00:00
```
2019-12-07 18:20:08 +00:00
## retention {#retention}
2020-03-20 18:20:59 +00:00
Аналитическая функция, которая показывает, насколько
2019-12-07 18:20:08 +00:00
выдерживаются те или иные условия, например, удержание динамики/уровня [посещаемости сайта ](https://yandex.ru/support/partner2/statistics/metrika-visitors-statistics.html?lang=ru ).
Функция принимает набор (от 1 до 32) логических условий, как в [WHERE ](../select.md#select-where ), и применяет их к заданному набору данных.
Условия, кроме первого, применяются попарно: результат второго будет истинным, если истинно первое и второе, третьего - если истинно первое и третье и т. д.
2020-03-20 18:20:59 +00:00
**Синтаксис**
2019-12-07 18:20:08 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2019-12-07 18:20:08 +00:00
retention(cond1, cond2, ..., cond32)
```
2020-03-20 18:20:59 +00:00
**Параметры**
2019-12-07 18:20:08 +00:00
2020-03-21 04:11:51 +00:00
- `cond` — вычисляемое условие или выражение, которое возвращает `UInt8` результат (1/0).
2019-12-07 18:20:08 +00:00
**Возвращаемое значение**
Массив из 1 или 0.
2020-03-21 04:11:51 +00:00
- 1 — условие выполнено.
- 0 — условие не выполнено.
2019-12-07 18:20:08 +00:00
Тип: `UInt8` .
**Пример**
Рассмотрим пример расчета функции `retention` для определения посещаемости сайта.
2020-03-20 18:20:59 +00:00
**1.** Создадим таблицу для илюстрации примера.
2019-12-07 18:20:08 +00:00
2020-03-20 18:20:59 +00:00
``` sql
2019-12-07 18:20:08 +00:00
CREATE TABLE retention_test(date Date, uid Int32)ENGINE = Memory;
INSERT INTO retention_test SELECT '2020-01-01', number FROM numbers(5);
INSERT INTO retention_test SELECT '2020-01-02', number FROM numbers(10);
INSERT INTO retention_test SELECT '2020-01-03', number FROM numbers(15);
```
Входная таблица:
Запрос:
2020-03-20 18:20:59 +00:00
``` sql
2019-12-07 18:20:08 +00:00
SELECT * FROM retention_test
```
Ответ:
2020-03-20 18:20:59 +00:00
``` text
2019-12-07 18:20:08 +00:00
┌───────date─┬─uid─┐
│ 2020-01-01 │ 0 │
│ 2020-01-01 │ 1 │
│ 2020-01-01 │ 2 │
│ 2020-01-01 │ 3 │
│ 2020-01-01 │ 4 │
└────────────┴─────┘
┌───────date─┬─uid─┐
│ 2020-01-02 │ 0 │
│ 2020-01-02 │ 1 │
│ 2020-01-02 │ 2 │
│ 2020-01-02 │ 3 │
│ 2020-01-02 │ 4 │
│ 2020-01-02 │ 5 │
│ 2020-01-02 │ 6 │
│ 2020-01-02 │ 7 │
│ 2020-01-02 │ 8 │
│ 2020-01-02 │ 9 │
└────────────┴─────┘
┌───────date─┬─uid─┐
│ 2020-01-03 │ 0 │
│ 2020-01-03 │ 1 │
│ 2020-01-03 │ 2 │
│ 2020-01-03 │ 3 │
│ 2020-01-03 │ 4 │
│ 2020-01-03 │ 5 │
│ 2020-01-03 │ 6 │
│ 2020-01-03 │ 7 │
│ 2020-01-03 │ 8 │
│ 2020-01-03 │ 9 │
│ 2020-01-03 │ 10 │
│ 2020-01-03 │ 11 │
│ 2020-01-03 │ 12 │
│ 2020-01-03 │ 13 │
│ 2020-01-03 │ 14 │
└────────────┴─────┘
```
**2.** Сгруппируем пользователей по уникальному идентификатору `uid` с помощью функции `retention` .
Запрос:
2020-03-20 18:20:59 +00:00
``` sql
2019-12-07 18:20:08 +00:00
SELECT
uid,
retention(date = '2020-01-01', date = '2020-01-02', date = '2020-01-03') AS r
FROM retention_test
WHERE date IN ('2020-01-01', '2020-01-02', '2020-01-03')
GROUP BY uid
ORDER BY uid ASC
```
Результат:
2020-03-20 18:20:59 +00:00
``` text
2019-12-07 18:20:08 +00:00
┌─uid─┬─r───────┐
│ 0 │ [1,1,1] │
│ 1 │ [1,1,1] │
│ 2 │ [1,1,1] │
│ 3 │ [1,1,1] │
│ 4 │ [1,1,1] │
│ 5 │ [0,0,0] │
│ 6 │ [0,0,0] │
│ 7 │ [0,0,0] │
│ 8 │ [0,0,0] │
│ 9 │ [0,0,0] │
│ 10 │ [0,0,0] │
│ 11 │ [0,0,0] │
│ 12 │ [0,0,0] │
│ 13 │ [0,0,0] │
│ 14 │ [0,0,0] │
└─────┴─────────┘
```
**3.** Рассчитаем количество посещений сайта за день.
Запрос:
2020-03-20 18:20:59 +00:00
``` sql
2019-12-07 18:20:08 +00:00
SELECT
sum(r[1]) AS r1,
sum(r[2]) AS r2,
sum(r[3]) AS r3
FROM
(
SELECT
uid,
retention(date = '2020-01-01', date = '2020-01-02', date = '2020-01-03') AS r
FROM retention_test
WHERE date IN ('2020-01-01', '2020-01-02', '2020-01-03')
GROUP BY uid
)
```
Результат:
2020-03-20 18:20:59 +00:00
``` text
2019-12-07 18:20:08 +00:00
┌─r1─┬─r2─┬─r3─┐
│ 5 │ 5 │ 5 │
└────┴────┴────┘
```
Где:
2020-03-21 04:11:51 +00:00
- `r1` - количество уникальных посетителей за 2020-01-01 (`cond1`).
- `r2` - количество уникальных посетителей в период между 2020-01-01 и 2020-01-02 (`cond1` и `cond2` ).
- `r3` - количество уникальных посетителей в период между 2020-01-01 и 2020-01-03 (`cond1` и `cond3` ).
2018-08-01 09:21:12 +00:00
2020-03-20 18:20:59 +00:00
## uniqUpTo(N)(x) {#uniquptonx}
2017-10-25 05:27:09 +00:00
Вычисляет количество различных значений аргумента, если оно меньше или равно N.
В случае, если количество различных значений аргумента больше N, возвращает N + 1.
Рекомендуется использовать для маленьких N - до 10. Максимальное значение N - 100.
Для состояния агрегатной функции используется количество оперативки равное 1 + N \* размер одного значения байт.
2019-08-23 10:55:34 +00:00
Для строк запоминается не криптографический хэш, имеющий размер 8 байт. Т о есть, для строк вычисление приближённое.
2017-10-25 05:27:09 +00:00
Функция также работает для нескольких аргументов.
Работает максимально быстро за исключением патологических случаев, когда используется большое значение N и количество уникальных значений чуть меньше N.
Пример применения:
2020-03-20 18:20:59 +00:00
``` text
2017-10-25 05:27:09 +00:00
Задача: показывать в отчёте только поисковые фразы, по которым было хотя бы 5 уникальных посетителей.
Решение: пишем в запросе GROUP BY SearchPhrase HAVING uniqUpTo(4)(UserID) >= 5
```
2018-10-16 10:47:17 +00:00
2020-01-30 10:34:55 +00:00
[Оригинальная статья ](https://clickhouse.tech/docs/ru/query_language/agg_functions/parametric_functions/ ) <!--hide-->