ClickHouse/docs/en/sql-reference/window-functions/index.md

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

782 lines
33 KiB
Markdown
Raw Normal View History

2021-02-04 18:14:02 +00:00
---
2022-08-28 14:53:34 +00:00
slug: /en/sql-reference/window-functions/
sidebar_label: Window Functions
2024-07-07 20:38:43 +00:00
sidebar_position: 1
2021-02-04 18:14:02 +00:00
---
2024-07-07 20:38:43 +00:00
# Window Functions
2024-03-06 15:02:18 +00:00
Windows functions let you perform calculations across a set of rows that are related to the current row.
Some of the calculations that you can do are similar to those that can be done with an aggregate function, but a window function doesn't cause rows to be grouped into a single output - the individual rows are still returned.
2024-03-07 11:44:57 +00:00
## Standard Window Functions
2024-03-06 15:02:18 +00:00
ClickHouse supports the standard grammar for defining windows and window functions. The table below indicates whether a feature is currently supported.
2021-01-28 17:39:32 +00:00
2024-07-07 20:38:43 +00:00
| Feature | Supported? |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ad hoc window specification (`count(*) over (partition by id order by time desc)`) | ✅ |
| expressions involving window functions, e.g. `(count(*) over ()) / 2)` | ✅ |
| `WINDOW` clause (`select ... from table window w as (partition by id)`) | ✅ |
| `ROWS` frame | ✅ |
| `RANGE` frame | ✅ (the default) |
| `INTERVAL` syntax for `DateTime` `RANGE OFFSET` frame | ❌ (specify the number of seconds instead (`RANGE` works with any numeric type).) |
| `GROUPS` frame | ❌ |
| Calculating aggregate functions over a frame (`sum(value) over (order by time)`) | ✅ (All aggregate functions are supported) |
| `rank()`, `dense_rank()`, `row_number()` | ✅ <br/>Alias: `denseRank()` |
| `percent_rank()` | ✅ Efficiently computes the relative standing of a value within a partition in a dataset. This function effectively replaces the more verbose and computationally intensive manual SQL calculation expressed as `ifNull((rank() OVER(PARTITION BY x ORDER BY y) - 1) / nullif(count(1) OVER(PARTITION BY x) - 1, 0), 0)` <br/>Alias: `percentRank()`|
| `lag/lead(value, offset)` | ❌ <br/> You can use one of the following workarounds:<br/> 1) `any(value) over (.... rows between <offset> preceding and <offset> preceding)`, or `following` for `lead` <br/> 2) `lagInFrame/leadInFrame`, which are analogous, but respect the window frame. To get behavior identical to `lag/lead`, use `rows between unbounded preceding and unbounded following` |
2024-04-03 07:26:52 +00:00
| ntile(buckets) | ✅ <br/> Specify window like, (partition by x order by y rows between unbounded preceding and unrounded following). |
2022-06-22 09:32:14 +00:00
## ClickHouse-specific Window Functions
There is also the following ClickHouse specific window function:
2024-03-06 15:02:18 +00:00
2022-06-22 09:32:14 +00:00
### nonNegativeDerivative(metric_column, timestamp_column[, INTERVAL X UNITS])
Finds non-negative derivative for given `metric_column` by `timestamp_column`.
`INTERVAL` can be omitted, default is `INTERVAL 1 SECOND`.
The computed value is the following for each row:
- `0` for 1st row,
- ${\text{metric}_i - \text{metric}_{i-1} \over \text{timestamp}_i - \text{timestamp}_{i-1}} * \text{interval}$ for $i_{th}$ row.
2021-01-28 17:39:32 +00:00
2022-06-18 03:27:57 +00:00
## Syntax
```text
aggregate_function (column_name)
2022-07-02 21:46:49 +00:00
OVER ([[PARTITION BY grouping_column] [ORDER BY sorting_column]
2022-07-02 19:56:33 +00:00
[ROWS or RANGE expression_to_bound_rows_withing_the_group]] | [window_name])
FROM table_name
WINDOW window_name as ([[PARTITION BY grouping_column] [ORDER BY sorting_column]])
2022-06-18 03:27:57 +00:00
```
- `PARTITION BY` - defines how to break a resultset into groups.
- `ORDER BY` - defines how to order rows inside the group during calculation aggregate_function.
- `ROWS or RANGE` - defines bounds of a frame, aggregate_function is calculated within a frame.
2024-03-06 15:02:18 +00:00
- `WINDOW` - allows multiple expressions to use the same window definition.
2022-06-18 03:27:57 +00:00
```text
PARTITION
2022-06-18 12:56:37 +00:00
┌─────────────────┐ <-- UNBOUNDED PRECEDING (BEGINNING of the PARTITION)
2022-06-18 03:27:57 +00:00
│ │
│ │
│=================│ <-- N PRECEDING <
│ N ROWS │ │ F
│ Before CURRENT │ │ R
│~~~~~~~~~~~~~~~~~│ <-- CURRENT ROW A
│ M ROWS │ │ M
│ After CURRENT │ │ E
│=================│ <-- M FOLLOWING <
│ │
│ │
└─────────────────┘ <--- UNBOUNDED FOLLOWING (END of the PARTITION)
```
2024-03-06 15:02:18 +00:00
### Functions
These functions can be used only as a window function.
2024-07-07 20:38:43 +00:00
- [`row_number()`](./row_number.md) - Number the current row within its partition starting from 1.
- [`first_value(x)`](./first_value.md) - Return the first value evaluated within its ordered frame.
- [`last_value(x)`](./last_value.md) - Return the last value evaluated within its ordered frame.
2024-07-08 10:53:55 +00:00
- [`nth_value(x, offset)`](./nth_value.md) - Return the first non-NULL value evaluated against the nth row (offset) in its ordered frame.
2024-07-07 20:38:43 +00:00
- [`rank()`](./rank.md) - Rank the current row within its partition with gaps.
- [`dense_rank()`](./dense_rank.md) - Rank the current row within its partition without gaps.
2024-07-08 10:53:55 +00:00
- [`lagInFrame(x)`](./lagInFrame.md) - Return a value evaluated at the row that is at a specified physical offset row before the current row within the ordered frame.
- [`leadInFrame(x)`](./leadInFrame.md) - Return a value evaluated at the row that is offset rows after the current row within the ordered frame.
2024-03-06 15:02:18 +00:00
2022-06-18 03:27:57 +00:00
## Examples
2024-03-06 15:02:18 +00:00
Let's have a look at some examples of how window functions can be used.
### Numbering rows
```sql
CREATE TABLE salaries
(
`team` String,
`player` String,
`salary` UInt32,
`position` String
)
Engine = Memory;
INSERT INTO salaries FORMAT Values
('Port Elizabeth Barbarians', 'Gary Chen', 195000, 'F'),
2024-03-22 11:54:04 +00:00
('New Coreystad Archdukes', 'Charles Juarez', 190000, 'F'),
('Port Elizabeth Barbarians', 'Michael Stanley', 150000, 'D'),
2024-03-22 11:54:04 +00:00
('New Coreystad Archdukes', 'Scott Harrison', 150000, 'D'),
('Port Elizabeth Barbarians', 'Robert George', 195000, 'M');
```
```sql
2024-11-28 01:01:04 +00:00
SELECT
player,
salary,
row_number() OVER (ORDER BY salary ASC) AS row
FROM salaries;
```
```text
┌─player──────────┬─salary─┬─row─┐
│ Michael Stanley │ 150000 │ 1 │
│ Scott Harrison │ 150000 │ 2 │
│ Charles Juarez │ 190000 │ 3 │
│ Gary Chen │ 195000 │ 4 │
│ Robert George │ 195000 │ 5 │
└─────────────────┴────────┴─────┘
```
```sql
2024-11-28 01:01:04 +00:00
SELECT
player,
salary,
row_number() OVER (ORDER BY salary ASC) AS row,
rank() OVER (ORDER BY salary ASC) AS rank,
dense_rank() OVER (ORDER BY salary ASC) AS denseRank
FROM salaries;
```
```text
┌─player──────────┬─salary─┬─row─┬─rank─┬─denseRank─┐
│ Michael Stanley │ 150000 │ 1 │ 1 │ 1 │
│ Scott Harrison │ 150000 │ 2 │ 1 │ 1 │
│ Charles Juarez │ 190000 │ 3 │ 3 │ 2 │
│ Gary Chen │ 195000 │ 4 │ 4 │ 3 │
│ Robert George │ 195000 │ 5 │ 4 │ 3 │
└─────────────────┴────────┴─────┴──────┴───────────┘
```
2024-03-22 11:54:04 +00:00
### Aggregation functions
Compare each player's salary to the average for their team.
```sql
2024-11-28 01:01:04 +00:00
SELECT
player,
salary,
team,
avg(salary) OVER (PARTITION BY team) AS teamAvg,
salary - teamAvg AS diff
2024-03-22 11:54:04 +00:00
FROM salaries;
```
```text
┌─player──────────┬─salary─┬─team──────────────────────┬─teamAvg─┬───diff─┐
│ Charles Juarez │ 190000 │ New Coreystad Archdukes │ 170000 │ 20000 │
│ Scott Harrison │ 150000 │ New Coreystad Archdukes │ 170000 │ -20000 │
│ Gary Chen │ 195000 │ Port Elizabeth Barbarians │ 180000 │ 15000 │
│ Michael Stanley │ 150000 │ Port Elizabeth Barbarians │ 180000 │ -30000 │
│ Robert George │ 195000 │ Port Elizabeth Barbarians │ 180000 │ 15000 │
└─────────────────┴────────┴───────────────────────────┴─────────┴────────┘
```
Compare each player's salary to the maximum for their team.
```sql
2024-11-28 01:01:04 +00:00
SELECT
player,
salary,
team,
max(salary) OVER (PARTITION BY team) AS teamMax,
salary - teamMax AS diff
2024-03-22 11:54:04 +00:00
FROM salaries;
```
```text
┌─player──────────┬─salary─┬─team──────────────────────┬─teamMax─┬───diff─┐
2024-03-22 11:54:04 +00:00
│ Charles Juarez │ 190000 │ New Coreystad Archdukes │ 190000 │ 0 │
│ Scott Harrison │ 150000 │ New Coreystad Archdukes │ 190000 │ -40000 │
│ Gary Chen │ 195000 │ Port Elizabeth Barbarians │ 195000 │ 0 │
│ Michael Stanley │ 150000 │ Port Elizabeth Barbarians │ 195000 │ -45000 │
│ Robert George │ 195000 │ Port Elizabeth Barbarians │ 195000 │ 0 │
└─────────────────┴────────┴───────────────────────────┴─────────┴────────┘
```
### Partitioning by column
2022-06-18 03:27:57 +00:00
```sql
CREATE TABLE wf_partition
(
`part_key` UInt64,
2022-07-02 19:56:33 +00:00
`value` UInt64,
`order` UInt64
2022-06-18 03:27:57 +00:00
)
ENGINE = Memory;
INSERT INTO wf_partition FORMAT Values
(1,1,1), (1,2,2), (1,3,3), (2,0,0), (3,0,0);
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key) AS frame_values
FROM wf_partition
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3] │ <
│ 1 │ 2 │ 2 │ [1,2,3] │ │ 1-st group
│ 1 │ 3 │ 3 │ [1,2,3] │ <
2023-04-19 16:10:51 +00:00
│ 2 │ 0 │ 0 │ [0] │ <- 2-nd group
│ 3 │ 0 │ 0 │ [0] │ <- 3-d group
2022-06-18 03:27:57 +00:00
└──────────┴───────┴───────┴──────────────┘
```
### Frame bounding
2022-06-18 03:27:57 +00:00
```sql
CREATE TABLE wf_frame
(
`part_key` UInt64,
`value` UInt64,
`order` UInt64
)
ENGINE = Memory;
INSERT INTO wf_frame FORMAT Values
(1,1,1), (1,2,2), (1,3,3), (1,4,4), (1,5,5);
```
2022-06-18 03:27:57 +00:00
```sql
-- Frame is bounded by bounds of a partition (BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
2022-06-18 03:27:57 +00:00
SELECT
part_key,
value,
order,
groupArray(value) OVER (
PARTITION BY part_key
ORDER BY order ASC
2024-11-28 01:01:04 +00:00
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS frame_values
2022-06-18 03:27:57 +00:00
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3,4,5] │
│ 1 │ 2 │ 2 │ [1,2,3,4,5] │
│ 1 │ 3 │ 3 │ [1,2,3,4,5] │
│ 1 │ 4 │ 4 │ [1,2,3,4,5] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │
└──────────┴───────┴───────┴──────────────┘
```
2022-06-18 03:27:57 +00:00
```sql
2024-11-28 01:01:04 +00:00
-- short form - no bound expression, no order by,
-- an equalent of `ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING`
2022-06-18 03:27:57 +00:00
SELECT
part_key,
value,
order,
2024-11-28 01:01:04 +00:00
groupArray(value) OVER (PARTITION BY part_key) AS frame_values_short,
groupArray(value) OVER (PARTITION BY part_key
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
) AS frame_values
2022-06-18 03:27:57 +00:00
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
2024-11-28 01:01:04 +00:00
┌─part_key─┬─value─┬─order─┬─frame_values_short─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3,4,5] │ [1,2,3,4,5] │
│ 1 │ 2 │ 2 │ [1,2,3,4,5] │ [1,2,3,4,5] │
│ 1 │ 3 │ 3 │ [1,2,3,4,5] │ [1,2,3,4,5] │
│ 1 │ 4 │ 4 │ [1,2,3,4,5] │ [1,2,3,4,5] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │ [1,2,3,4,5] │
└──────────┴───────┴───────┴────────────────────┴──────────────┘
```
2022-06-18 03:27:57 +00:00
```sql
-- frame is bounded by the beginning of a partition and the current row
2022-06-18 03:27:57 +00:00
SELECT
part_key,
value,
order,
groupArray(value) OVER (
PARTITION BY part_key
ORDER BY order ASC
2024-11-28 01:01:04 +00:00
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS frame_values
2022-06-18 03:27:57 +00:00
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1] │
│ 1 │ 2 │ 2 │ [1,2] │
│ 1 │ 3 │ 3 │ [1,2,3] │
│ 1 │ 4 │ 4 │ [1,2,3,4] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │
└──────────┴───────┴───────┴──────────────┘
```
2022-06-18 03:27:57 +00:00
```sql
-- short form (frame is bounded by the beginning of a partition and the current row)
2024-11-28 01:01:04 +00:00
-- an equalent of `ORDER BY order ASC ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW`
2022-06-18 03:27:57 +00:00
SELECT
part_key,
value,
order,
2024-11-28 01:01:04 +00:00
groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC) AS frame_values_short,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order ASC
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS frame_values
2022-06-18 03:27:57 +00:00
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
2024-11-28 01:01:04 +00:00
┌─part_key─┬─value─┬─order─┬─frame_values_short─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1] │ [1] │
│ 1 │ 2 │ 2 │ [1,2] │ [1,2] │
│ 1 │ 3 │ 3 │ [1,2,3] │ [1,2,3] │
│ 1 │ 4 │ 4 │ [1,2,3,4] │ [1,2,3,4] │
│ 1 │ 5 │ 5 │ [1,2,3,4,5] │ [1,2,3,4,5] │
└──────────┴───────┴───────┴────────────────────┴──────────────┘
```
2022-06-18 03:27:57 +00:00
```sql
-- frame is bounded by the beginning of a partition and the current row, but order is backward
2022-06-18 03:27:57 +00:00
SELECT
part_key,
value,
order,
groupArray(value) OVER (PARTITION BY part_key ORDER BY order DESC) AS frame_values
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
2024-11-28 01:01:04 +00:00
2022-06-18 03:27:57 +00:00
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [5,4,3,2,1] │
│ 1 │ 2 │ 2 │ [5,4,3,2] │
│ 1 │ 3 │ 3 │ [5,4,3] │
│ 1 │ 4 │ 4 │ [5,4] │
│ 1 │ 5 │ 5 │ [5] │
└──────────┴───────┴───────┴──────────────┘
```
2022-06-18 03:27:57 +00:00
```sql
2022-06-18 03:27:57 +00:00
-- sliding frame - 1 PRECEDING ROW AND CURRENT ROW
SELECT
part_key,
value,
order,
groupArray(value) OVER (
PARTITION BY part_key
ORDER BY order ASC
2024-11-28 01:01:04 +00:00
ROWS BETWEEN 1 PRECEDING AND CURRENT ROW
) AS frame_values
2022-06-18 03:27:57 +00:00
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1] │
│ 1 │ 2 │ 2 │ [1,2] │
│ 1 │ 3 │ 3 │ [2,3] │
│ 1 │ 4 │ 4 │ [3,4] │
│ 1 │ 5 │ 5 │ [4,5] │
└──────────┴───────┴───────┴──────────────┘
```
2022-06-18 03:27:57 +00:00
```sql
2024-11-28 01:01:04 +00:00
-- sliding frame - ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING
2022-06-18 03:27:57 +00:00
SELECT
part_key,
value,
order,
groupArray(value) OVER (
PARTITION BY part_key
ORDER BY order ASC
2024-11-28 01:01:04 +00:00
ROWS BETWEEN 1 PRECEDING AND UNBOUNDED FOLLOWING
) AS frame_values
2022-06-18 03:27:57 +00:00
FROM wf_frame
ORDER BY
part_key ASC,
value ASC;
2024-11-28 01:01:04 +00:00
2022-06-18 03:27:57 +00:00
┌─part_key─┬─value─┬─order─┬─frame_values─┐
│ 1 │ 1 │ 1 │ [1,2,3,4,5] │
│ 1 │ 2 │ 2 │ [1,2,3,4,5] │
│ 1 │ 3 │ 3 │ [2,3,4,5] │
│ 1 │ 4 │ 4 │ [3,4,5] │
│ 1 │ 5 │ 5 │ [4,5] │
└──────────┴───────┴───────┴──────────────┘
```
2022-07-02 19:56:33 +00:00
```sql
2022-07-02 19:56:33 +00:00
-- row_number does not respect the frame, so rn_1 = rn_2 = rn_3 != rn_4
SELECT
part_key,
value,
order,
groupArray(value) OVER w1 AS frame_values,
row_number() OVER w1 AS rn_1,
sum(1) OVER w1 AS rn_2,
row_number() OVER w2 AS rn_3,
sum(1) OVER w2 AS rn_4
FROM wf_frame
WINDOW
w1 AS (PARTITION BY part_key ORDER BY order DESC),
w2 AS (
PARTITION BY part_key
ORDER BY order DESC
2024-11-28 01:01:04 +00:00
ROWS BETWEEN 1 PRECEDING AND CURRENT ROW
)
2022-07-02 19:56:33 +00:00
ORDER BY
part_key ASC,
value ASC;
2024-11-28 01:01:04 +00:00
2022-07-02 19:56:33 +00:00
┌─part_key─┬─value─┬─order─┬─frame_values─┬─rn_1─┬─rn_2─┬─rn_3─┬─rn_4─┐
│ 1 │ 1 │ 1 │ [5,4,3,2,1] │ 5 │ 5 │ 5 │ 2 │
│ 1 │ 2 │ 2 │ [5,4,3,2] │ 4 │ 4 │ 4 │ 2 │
│ 1 │ 3 │ 3 │ [5,4,3] │ 3 │ 3 │ 3 │ 2 │
│ 1 │ 4 │ 4 │ [5,4] │ 2 │ 2 │ 2 │ 2 │
│ 1 │ 5 │ 5 │ [5] │ 1 │ 1 │ 1 │ 1 │
└──────────┴───────┴───────┴──────────────┴──────┴──────┴──────┴──────┘
```
2022-07-02 19:56:33 +00:00
```sql
2022-07-02 19:56:33 +00:00
-- first_value and last_value respect the frame
SELECT
groupArray(value) OVER w1 AS frame_values_1,
first_value(value) OVER w1 AS first_value_1,
last_value(value) OVER w1 AS last_value_1,
groupArray(value) OVER w2 AS frame_values_2,
first_value(value) OVER w2 AS first_value_2,
last_value(value) OVER w2 AS last_value_2
FROM wf_frame
WINDOW
w1 AS (PARTITION BY part_key ORDER BY order ASC),
2024-11-28 01:01:04 +00:00
w2 AS (PARTITION BY part_key ORDER BY order ASC ROWS BETWEEN 1 PRECEDING AND CURRENT ROW)
2022-07-02 19:56:33 +00:00
ORDER BY
part_key ASC,
value ASC;
2024-11-28 01:01:04 +00:00
2022-07-02 19:56:33 +00:00
┌─frame_values_1─┬─first_value_1─┬─last_value_1─┬─frame_values_2─┬─first_value_2─┬─last_value_2─┐
│ [1] │ 1 │ 1 │ [1] │ 1 │ 1 │
│ [1,2] │ 1 │ 2 │ [1,2] │ 1 │ 2 │
│ [1,2,3] │ 1 │ 3 │ [2,3] │ 2 │ 3 │
│ [1,2,3,4] │ 1 │ 4 │ [3,4] │ 3 │ 4 │
│ [1,2,3,4,5] │ 1 │ 5 │ [4,5] │ 4 │ 5 │
└────────────────┴───────────────┴──────────────┴────────────────┴───────────────┴──────────────┘
```
2022-07-02 19:56:33 +00:00
```sql
2022-07-02 19:56:33 +00:00
-- second value within the frame
SELECT
groupArray(value) OVER w1 AS frame_values_1,
nth_value(value, 2) OVER w1 AS second_value
FROM wf_frame
2024-11-28 01:01:04 +00:00
WINDOW w1 AS (PARTITION BY part_key ORDER BY order ASC ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
2022-07-02 19:56:33 +00:00
ORDER BY
part_key ASC,
2024-11-28 01:01:04 +00:00
value ASC;
2022-07-02 19:56:33 +00:00
┌─frame_values_1─┬─second_value─┐
│ [1] │ 0 │
│ [1,2] │ 2 │
│ [1,2,3] │ 2 │
│ [1,2,3,4] │ 2 │
│ [2,3,4,5] │ 3 │
└────────────────┴──────────────┘
```
2022-07-02 19:56:33 +00:00
```sql
2022-07-02 19:56:33 +00:00
-- second value within the frame + Null for missing values
SELECT
groupArray(value) OVER w1 AS frame_values_1,
nth_value(toNullable(value), 2) OVER w1 AS second_value
FROM wf_frame
2024-11-28 01:01:04 +00:00
WINDOW w1 AS (PARTITION BY part_key ORDER BY order ASC ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
2022-07-02 19:56:33 +00:00
ORDER BY
part_key ASC,
2024-11-28 01:01:04 +00:00
value ASC;
2022-07-02 19:56:33 +00:00
┌─frame_values_1─┬─second_value─┐
│ [1] │ ᴺᵁᴸᴸ │
│ [1,2] │ 2 │
│ [1,2,3] │ 2 │
│ [1,2,3,4] │ 2 │
│ [2,3,4,5] │ 3 │
└────────────────┴──────────────┘
2022-06-18 03:27:57 +00:00
```
## Real world examples
The following examples solve common real-world problems.
2024-03-22 11:54:04 +00:00
### Maximum/total salary per department
2022-06-18 03:27:57 +00:00
```sql
CREATE TABLE employees
(
`department` String,
`employee_name` String,
`salary` Float
)
ENGINE = Memory;
INSERT INTO employees FORMAT Values
('Finance', 'Jonh', 200),
('Finance', 'Joan', 210),
('Finance', 'Jean', 505),
('IT', 'Tim', 200),
('IT', 'Anna', 300),
('IT', 'Elen', 500);
```
2022-06-18 03:27:57 +00:00
```sql
2022-06-18 03:27:57 +00:00
SELECT
department,
employee_name AS emp,
salary,
max_salary_per_dep,
total_salary_per_dep,
round((salary / total_salary_per_dep) * 100, 2) AS `share_per_dep(%)`
FROM
(
SELECT
department,
employee_name,
salary,
max(salary) OVER wndw AS max_salary_per_dep,
sum(salary) OVER wndw AS total_salary_per_dep
FROM employees
WINDOW wndw AS (
PARTITION BY department
rows BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
)
2022-06-18 03:27:57 +00:00
ORDER BY
department ASC,
employee_name ASC
);
┌─department─┬─emp──┬─salary─┬─max_salary_per_dep─┬─total_salary_per_dep─┬─share_per_dep(%)─┐
│ Finance │ Jean │ 505 │ 505 │ 915 │ 55.19 │
│ Finance │ Joan │ 210 │ 505 │ 915 │ 22.95 │
│ Finance │ Jonh │ 200 │ 505 │ 915 │ 21.86 │
│ IT │ Anna │ 300 │ 500 │ 1000 │ 30 │
│ IT │ Elen │ 500 │ 500 │ 1000 │ 50 │
│ IT │ Tim │ 200 │ 500 │ 1000 │ 20 │
└────────────┴──────┴────────┴────────────────────┴──────────────────────┴──────────────────┘
```
2024-03-22 11:54:04 +00:00
### Cumulative sum
2022-06-18 03:27:57 +00:00
```sql
CREATE TABLE warehouse
2022-06-18 03:27:57 +00:00
(
`item` String,
2022-06-18 03:27:57 +00:00
`ts` DateTime,
`value` Float
)
ENGINE = Memory
INSERT INTO warehouse VALUES
('sku38', '2020-01-01', 9),
('sku38', '2020-02-01', 1),
('sku38', '2020-03-01', -4),
('sku1', '2020-01-01', 1),
('sku1', '2020-02-01', 1),
('sku1', '2020-03-01', 1);
```
2022-06-18 03:27:57 +00:00
```sql
2022-06-18 03:27:57 +00:00
SELECT
item,
ts,
value,
sum(value) OVER (PARTITION BY item ORDER BY ts ASC) AS stock_balance
FROM warehouse
ORDER BY
item ASC,
ts ASC;
┌─item──┬──────────────────ts─┬─value─┬─stock_balance─┐
│ sku1 │ 2020-01-01 00:00:00 │ 1 │ 1 │
│ sku1 │ 2020-02-01 00:00:00 │ 1 │ 2 │
│ sku1 │ 2020-03-01 00:00:00 │ 1 │ 3 │
│ sku38 │ 2020-01-01 00:00:00 │ 9 │ 9 │
│ sku38 │ 2020-02-01 00:00:00 │ 1 │ 10 │
│ sku38 │ 2020-03-01 00:00:00 │ -4 │ 6 │
└───────┴─────────────────────┴───────┴───────────────┘
```
### Moving / Sliding Average (per 3 rows)
```sql
CREATE TABLE sensors
(
`metric` String,
`ts` DateTime,
`value` Float
)
ENGINE = Memory;
insert into sensors values('cpu_temp', '2020-01-01 00:00:00', 87),
('cpu_temp', '2020-01-01 00:00:01', 77),
('cpu_temp', '2020-01-01 00:00:02', 93),
('cpu_temp', '2020-01-01 00:00:03', 87),
('cpu_temp', '2020-01-01 00:00:04', 87),
('cpu_temp', '2020-01-01 00:00:05', 87),
('cpu_temp', '2020-01-01 00:00:06', 87),
('cpu_temp', '2020-01-01 00:00:07', 87);
```
```sql
2022-06-18 03:27:57 +00:00
SELECT
metric,
ts,
value,
avg(value) OVER (
PARTITION BY metric
ORDER BY ts ASC
2024-11-28 01:01:04 +00:00
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
) AS moving_avg_temp
2022-06-18 03:27:57 +00:00
FROM sensors
ORDER BY
metric ASC,
ts ASC;
┌─metric───┬──────────────────ts─┬─value─┬───moving_avg_temp─┐
│ cpu_temp │ 2020-01-01 00:00:00 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:00:01 │ 77 │ 82 │
│ cpu_temp │ 2020-01-01 00:00:02 │ 93 │ 85.66666666666667 │
│ cpu_temp │ 2020-01-01 00:00:03 │ 87 │ 85.66666666666667 │
│ cpu_temp │ 2020-01-01 00:00:04 │ 87 │ 89 │
│ cpu_temp │ 2020-01-01 00:00:05 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:00:06 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:00:07 │ 87 │ 87 │
└──────────┴─────────────────────┴───────┴───────────────────┘
```
### Moving / Sliding Average (per 10 seconds)
```sql
SELECT
metric,
ts,
value,
avg(value) OVER (PARTITION BY metric ORDER BY ts
Range BETWEEN 10 PRECEDING AND CURRENT ROW) AS moving_avg_10_seconds_temp
FROM sensors
ORDER BY
metric ASC,
ts ASC;
┌─metric───┬──────────────────ts─┬─value─┬─moving_avg_10_seconds_temp─┐
│ cpu_temp │ 2020-01-01 00:00:00 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:01:10 │ 77 │ 77 │
│ cpu_temp │ 2020-01-01 00:02:20 │ 93 │ 93 │
│ cpu_temp │ 2020-01-01 00:03:30 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:04:40 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:05:50 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:06:00 │ 87 │ 87 │
│ cpu_temp │ 2020-01-01 00:07:10 │ 87 │ 87 │
└──────────┴─────────────────────┴───────┴────────────────────────────┘
```
2022-08-23 17:32:56 +00:00
### Moving / Sliding Average (per 10 days)
2022-08-23 18:02:44 +00:00
Temperature is stored with second precision, but using `Range` and `ORDER BY toDate(ts)` we form a frame with the size of 10 units, and because of `toDate(ts)` the unit is a day.
2022-08-23 17:32:56 +00:00
```sql
CREATE TABLE sensors
(
`metric` String,
`ts` DateTime,
`value` Float
)
ENGINE = Memory;
insert into sensors values('ambient_temp', '2020-01-01 00:00:00', 16),
('ambient_temp', '2020-01-01 12:00:00', 16),
('ambient_temp', '2020-01-02 11:00:00', 9),
('ambient_temp', '2020-01-02 12:00:00', 9),
('ambient_temp', '2020-02-01 10:00:00', 10),
('ambient_temp', '2020-02-01 12:00:00', 10),
('ambient_temp', '2020-02-10 12:00:00', 12),
('ambient_temp', '2020-02-10 13:00:00', 12),
('ambient_temp', '2020-02-20 12:00:01', 16),
('ambient_temp', '2020-03-01 12:00:00', 16),
('ambient_temp', '2020-03-01 12:00:00', 16),
('ambient_temp', '2020-03-01 12:00:00', 16);
```
2022-08-23 17:32:56 +00:00
```sql
2022-08-23 17:32:56 +00:00
SELECT
metric,
ts,
value,
round(avg(value) OVER (PARTITION BY metric ORDER BY toDate(ts)
Range BETWEEN 10 PRECEDING AND CURRENT ROW),2) AS moving_avg_10_days_temp
2022-08-23 17:32:56 +00:00
FROM sensors
ORDER BY
metric ASC,
ts ASC;
┌─metric───────┬──────────────────ts─┬─value─┬─moving_avg_10_days_temp─┐
│ ambient_temp │ 2020-01-01 00:00:00 │ 16 │ 16 │
│ ambient_temp │ 2020-01-01 12:00:00 │ 16 │ 16 │
│ ambient_temp │ 2020-01-02 11:00:00 │ 9 │ 12.5 │
│ ambient_temp │ 2020-01-02 12:00:00 │ 9 │ 12.5 │
│ ambient_temp │ 2020-02-01 10:00:00 │ 10 │ 10 │
│ ambient_temp │ 2020-02-01 12:00:00 │ 10 │ 10 │
│ ambient_temp │ 2020-02-10 12:00:00 │ 12 │ 11 │
│ ambient_temp │ 2020-02-10 13:00:00 │ 12 │ 11 │
│ ambient_temp │ 2020-02-20 12:00:01 │ 16 │ 13.33 │
│ ambient_temp │ 2020-03-01 12:00:00 │ 16 │ 16 │
│ ambient_temp │ 2020-03-01 12:00:00 │ 16 │ 16 │
│ ambient_temp │ 2020-03-01 12:00:00 │ 16 │ 16 │
└──────────────┴─────────────────────┴───────┴─────────────────────────┘
```
2022-12-05 17:28:03 +00:00
2024-03-06 15:02:18 +00:00
## References
### GitHub Issues
The roadmap for the initial support of window functions is [in this issue](https://github.com/ClickHouse/ClickHouse/issues/18097).
All GitHub issues related to window functions have the [comp-window-functions](https://github.com/ClickHouse/ClickHouse/labels/comp-window-functions) tag.
### Tests
These tests contain the examples of the currently supported grammar:
https://github.com/ClickHouse/ClickHouse/blob/master/tests/performance/window_functions.xml
https://github.com/ClickHouse/ClickHouse/blob/master/tests/queries/0_stateless/01591_window_functions.sql
### Postgres Docs
https://www.postgresql.org/docs/current/sql-select.html#SQL-WINDOW
https://www.postgresql.org/docs/devel/sql-expressions.html#SYNTAX-WINDOW-FUNCTIONS
https://www.postgresql.org/docs/devel/functions-window.html
https://www.postgresql.org/docs/devel/tutorial-window.html
### MySQL Docs
https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions-usage.html
https://dev.mysql.com/doc/refman/8.0/en/window-functions-frames.html
2022-12-05 17:28:03 +00:00
## Related Content
2023-01-17 15:38:10 +00:00
- Blog: [Working with time series data in ClickHouse](https://clickhouse.com/blog/working-with-time-series-data-and-functions-ClickHouse)
- Blog: [Window and array functions for Git commit sequences](https://clickhouse.com/blog/clickhouse-window-array-functions-git-commits)
- Blog: [Getting Data Into ClickHouse - Part 3 - Using S3](https://clickhouse.com/blog/getting-data-into-clickhouse-part-3-s3)