2015-10-05 01:11:12 +00:00
|
|
|
#pragma once
|
|
|
|
|
2017-04-01 09:19:00 +00:00
|
|
|
#include <Common/Exception.h>
|
2015-10-05 01:11:12 +00:00
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <limits>
|
|
|
|
#include <tuple>
|
|
|
|
#include <type_traits>
|
|
|
|
|
2017-05-07 20:25:26 +00:00
|
|
|
/** This class provides a way to evaluate the error in the result of applying the HyperLogLog algorithm.
|
|
|
|
* Empirical observations show that large errors occur at E < 5 * 2^precision, where
|
|
|
|
* E is the return value of the HyperLogLog algorithm, and `precision` is the HyperLogLog precision parameter.
|
|
|
|
* See "HyperLogLog in Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation Algorithm".
|
2015-10-05 01:11:12 +00:00
|
|
|
* (S. Heule et al., Proceedings of the EDBT 2013 Conference).
|
|
|
|
*/
|
|
|
|
template <typename BiasData>
|
|
|
|
class HyperLogLogBiasEstimator
|
|
|
|
{
|
|
|
|
public:
|
2017-04-01 07:20:54 +00:00
|
|
|
static constexpr bool isTrivial()
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-05-09 19:07:35 +00:00
|
|
|
/// Maximum number of unique values to which the correction should apply
|
2017-05-07 20:25:26 +00:00
|
|
|
/// from the LinearCounting algorithm.
|
2017-04-01 07:20:54 +00:00
|
|
|
static double getThreshold()
|
|
|
|
{
|
|
|
|
return BiasData::getThreshold();
|
|
|
|
}
|
|
|
|
|
2017-05-07 20:25:26 +00:00
|
|
|
/// Return the error estimate.
|
2017-04-01 07:20:54 +00:00
|
|
|
static double getBias(double raw_estimate)
|
|
|
|
{
|
|
|
|
const auto & estimates = BiasData::getRawEstimates();
|
|
|
|
const auto & biases = BiasData::getBiases();
|
|
|
|
|
|
|
|
auto it = std::lower_bound(estimates.begin(), estimates.end(), raw_estimate);
|
|
|
|
|
|
|
|
if (it == estimates.end())
|
|
|
|
{
|
|
|
|
return biases[estimates.size() - 1];
|
|
|
|
}
|
|
|
|
else if (*it == raw_estimate)
|
|
|
|
{
|
|
|
|
size_t index = std::distance(estimates.begin(), it);
|
|
|
|
return biases[index];
|
|
|
|
}
|
|
|
|
else if (it == estimates.begin())
|
|
|
|
{
|
|
|
|
return biases[0];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2017-05-07 20:25:26 +00:00
|
|
|
/// We get the error estimate by linear interpolation.
|
2017-04-01 07:20:54 +00:00
|
|
|
size_t index = std::distance(estimates.begin(), it);
|
|
|
|
|
|
|
|
double estimate1 = estimates[index - 1];
|
|
|
|
double estimate2 = estimates[index];
|
|
|
|
|
|
|
|
double bias1 = biases[index - 1];
|
|
|
|
double bias2 = biases[index];
|
2017-05-07 20:25:26 +00:00
|
|
|
/// It is assumed that the estimate1 < estimate2 condition is always satisfied.
|
2017-04-01 07:20:54 +00:00
|
|
|
double slope = (bias2 - bias1) / (estimate2 - estimate1);
|
|
|
|
|
|
|
|
return bias1 + slope * (raw_estimate - estimate1);
|
|
|
|
}
|
|
|
|
}
|
2015-10-05 01:11:12 +00:00
|
|
|
|
|
|
|
private:
|
2017-05-07 20:25:26 +00:00
|
|
|
/// Static checks.
|
2017-04-01 07:20:54 +00:00
|
|
|
using TRawEstimatesRef = decltype(BiasData::getRawEstimates());
|
2017-12-25 04:01:46 +00:00
|
|
|
using TRawEstimates = std::remove_reference_t<TRawEstimatesRef>;
|
2017-04-01 07:20:54 +00:00
|
|
|
|
|
|
|
using TBiasDataRef = decltype(BiasData::getBiases());
|
2017-12-25 04:01:46 +00:00
|
|
|
using TBiasData = std::remove_reference_t<TBiasDataRef>;
|
2017-04-01 07:20:54 +00:00
|
|
|
|
2017-12-25 04:01:46 +00:00
|
|
|
static_assert(std::is_same_v<TRawEstimates, TBiasData>, "Bias estimator data have inconsistent types");
|
2017-04-01 07:20:54 +00:00
|
|
|
static_assert(std::tuple_size<TRawEstimates>::value > 0, "Bias estimator has no raw estimate data");
|
|
|
|
static_assert(std::tuple_size<TBiasData>::value > 0, "Bias estimator has no bias data");
|
|
|
|
static_assert(std::tuple_size<TRawEstimates>::value == std::tuple_size<TBiasData>::value,
|
|
|
|
"Bias estimator has inconsistent data");
|
2015-10-05 01:11:12 +00:00
|
|
|
};
|
|
|
|
|
2017-05-07 20:25:26 +00:00
|
|
|
/** Trivial case of HyperLogLogBiasEstimator: used if we do not want to fix
|
2017-05-09 19:07:35 +00:00
|
|
|
* error. This has meaning for small values of the accuracy parameter, for example 5 or 12.
|
2017-05-07 20:25:26 +00:00
|
|
|
* Then the corrections from the original version of the HyperLogLog algorithm are applied.
|
|
|
|
* See "HyperLogLog: The analysis of a near-optimal cardinality estimation algorithm"
|
2015-10-05 01:11:12 +00:00
|
|
|
* (P. Flajolet et al., AOFA '07: Proceedings of the 2007 International Conference on Analysis
|
|
|
|
* of Algorithms)
|
|
|
|
*/
|
|
|
|
struct TrivialBiasEstimator
|
|
|
|
{
|
2017-04-01 07:20:54 +00:00
|
|
|
static constexpr bool isTrivial()
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static double getThreshold()
|
|
|
|
{
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
2017-12-02 02:47:12 +00:00
|
|
|
static double getBias(double /*raw_estimate*/)
|
2017-04-01 07:20:54 +00:00
|
|
|
{
|
|
|
|
return 0.0;
|
|
|
|
}
|
2015-10-05 01:11:12 +00:00
|
|
|
};
|