ClickHouse/dbms/include/DB/AggregateFunctions/AggregateFunctionQuantileExactWeighted.h

299 lines
8.6 KiB
C++
Raw Normal View History

#pragma once
#include <DB/Common/HashTable/HashMap.h>
#include <DB/DataTypes/DataTypesNumberFixed.h>
#include <DB/DataTypes/DataTypeArray.h>
#include <DB/AggregateFunctions/IBinaryAggregateFunction.h>
#include <DB/AggregateFunctions/QuantilesCommon.h>
#include <DB/Columns/ColumnArray.h>
namespace DB
{
/** В качестве состояния используется хэш-таблица вида: значение -> сколько раз встретилось.
*/
template <typename T>
struct AggregateFunctionQuantileExactWeightedData
{
using Key = T;
using Weight = UInt64;
/// При создании, хэш-таблица должна быть небольшой.
using Map = HashMap<
Key, Weight,
HashCRC32<Key>,
HashTableGrower<4>,
HashTableAllocatorWithStackMemory<sizeof(std::pair<Key, Weight>) * (1 << 3)>
>;
Map map;
};
/** Точно вычисляет квантиль по множеству значений, для каждого из которых задан вес - сколько раз значение встречалось.
* Можно рассматривать набор пар value, weight - как набор гистограмм,
* в которых value - значение, округлённое до середины столбика, а weight - высота столбика.
* В качестве типа аргумента может быть только числовой тип (в том числе, дата и дата-с-временем).
* Тип результата совпадает с типом аргумента.
*/
template <typename ValueType, typename WeightType>
class AggregateFunctionQuantileExactWeighted final
: public IBinaryAggregateFunction<
AggregateFunctionQuantileExactWeightedData<ValueType>,
AggregateFunctionQuantileExactWeighted<ValueType, WeightType>>
{
private:
double level;
DataTypePtr type;
public:
AggregateFunctionQuantileExactWeighted(double level_ = 0.5) : level(level_) {}
String getName() const override { return "quantileExactWeighted"; }
DataTypePtr getReturnType() const override
{
return type;
}
void setArgumentsImpl(const DataTypes & arguments)
{
type = arguments[0];
}
void setParameters(const Array & params) override
{
if (params.size() != 1)
throw Exception("Aggregate function " + getName() + " requires exactly one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
level = apply_visitor(FieldVisitorConvertToNumber<Float64>(), params[0]);
}
void addImpl(AggregateDataPtr place, const IColumn & column_value, const IColumn & column_weight, size_t row_num) const
{
this->data(place)
.map[static_cast<const ColumnVector<ValueType> &>(column_value).getData()[row_num]]
+= static_cast<const ColumnVector<WeightType> &>(column_weight).getData()[row_num];
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
auto & map = this->data(place).map;
const auto & rhs_map = this->data(rhs).map;
for (const auto & pair : rhs_map)
map[pair.first] += pair.second;
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).map.write(buf);
}
2016-03-12 04:01:03 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf) const override
{
typename AggregateFunctionQuantileExactWeightedData<ValueType>::Map::Reader reader(buf);
auto & map = this->data(place).map;
while (reader.next())
{
const auto & pair = reader.get();
2016-03-12 04:01:03 +00:00
map[pair.first] = pair.second;
}
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
auto & map = this->data(place).map;
size_t size = map.size();
if (0 == size)
{
static_cast<ColumnVector<ValueType> &>(to).getData().push_back(ValueType());
return;
}
/// Копируем данные во временный массив, чтобы получить нужный по порядку элемент.
using Pair = typename AggregateFunctionQuantileExactWeightedData<ValueType>::Map::value_type;
2015-11-16 20:33:43 +00:00
std::unique_ptr<Pair[]> array_holder(new Pair[size]);
Pair * array = array_holder.get();
size_t i = 0;
UInt64 sum_weight = 0;
for (const auto & pair : map)
{
sum_weight += pair.second;
array[i] = pair;
++i;
}
std::sort(array, array + size, [](const Pair & a, const Pair & b) { return a.first < b.first; });
2016-03-13 19:00:59 +00:00
UInt64 threshold = std::ceil(sum_weight * level);
UInt64 accumulated = 0;
const Pair * it = array;
const Pair * end = array + size;
while (it < end)
{
accumulated += it->second;
if (accumulated >= threshold)
break;
++it;
}
if (it == end)
--it;
static_cast<ColumnVector<ValueType> &>(to).getData().push_back(it->first);
}
};
/** То же самое, но позволяет вычислить сразу несколько квантилей.
* Для этого, принимает в качестве параметров несколько уровней. Пример: quantilesExactWeighted(0.5, 0.8, 0.9, 0.95)(ConnectTiming, Weight).
* Возвращает массив результатов.
*/
template <typename ValueType, typename WeightType>
class AggregateFunctionQuantilesExactWeighted final
: public IBinaryAggregateFunction<
AggregateFunctionQuantileExactWeightedData<ValueType>,
AggregateFunctionQuantilesExactWeighted<ValueType, WeightType>>
{
private:
QuantileLevels<double> levels;
DataTypePtr type;
public:
String getName() const override { return "quantilesExactWeighted"; }
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeArray>(type);
}
void setArgumentsImpl(const DataTypes & arguments)
{
type = arguments[0];
}
void setParameters(const Array & params) override
{
levels.set(params);
}
void addImpl(AggregateDataPtr place, const IColumn & column_value, const IColumn & column_weight, size_t row_num) const
{
this->data(place)
.map[static_cast<const ColumnVector<ValueType> &>(column_value).getData()[row_num]]
+= static_cast<const ColumnVector<WeightType> &>(column_weight).getData()[row_num];
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const override
{
auto & map = this->data(place).map;
const auto & rhs_map = this->data(rhs).map;
for (const auto & pair : rhs_map)
map[pair.first] += pair.second;
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
this->data(place).map.write(buf);
}
2016-03-12 04:01:03 +00:00
void deserialize(AggregateDataPtr place, ReadBuffer & buf) const override
{
typename AggregateFunctionQuantileExactWeightedData<ValueType>::Map::Reader reader(buf);
auto & map = this->data(place).map;
while (reader.next())
{
const auto & pair = reader.get();
2016-03-12 04:01:03 +00:00
map[pair.first] = pair.second;
}
}
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
{
auto & map = this->data(place).map;
size_t size = map.size();
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
ColumnArray::Offsets_t & offsets_to = arr_to.getOffsets();
size_t num_levels = levels.size();
offsets_to.push_back((offsets_to.size() == 0 ? 0 : offsets_to.back()) + num_levels);
typename ColumnVector<ValueType>::Container_t & data_to = static_cast<ColumnVector<ValueType> &>(arr_to.getData()).getData();
size_t old_size = data_to.size();
data_to.resize(old_size + num_levels);
if (0 == size)
{
for (size_t i = 0; i < num_levels; ++i)
data_to[old_size + i] = ValueType();
return;
}
/// Копируем данные во временный массив, чтобы получить нужный по порядку элемент.
using Pair = typename AggregateFunctionQuantileExactWeightedData<ValueType>::Map::value_type;
2015-11-16 23:49:18 +00:00
std::unique_ptr<Pair[]> array_holder(new Pair[size]);
Pair * array = array_holder.get();
size_t i = 0;
UInt64 sum_weight = 0;
for (const auto & pair : map)
{
sum_weight += pair.second;
array[i] = pair;
++i;
}
std::sort(array, array + size, [](const Pair & a, const Pair & b) { return a.first < b.first; });
UInt64 accumulated = 0;
const Pair * it = array;
const Pair * end = array + size;
size_t level_index = 0;
2016-03-13 19:00:59 +00:00
UInt64 threshold = std::ceil(sum_weight * levels.levels[levels.permutation[level_index]]);
while (it < end)
{
accumulated += it->second;
while (accumulated >= threshold)
{
2016-03-13 18:15:41 +00:00
data_to[old_size + levels.permutation[level_index]] = it->first;
++level_index;
if (level_index == num_levels)
return;
2016-03-13 19:00:59 +00:00
threshold = std::ceil(sum_weight * levels.levels[levels.permutation[level_index]]);
}
++it;
}
while (level_index < num_levels)
{
2016-03-13 18:15:41 +00:00
data_to[old_size + levels.permutation[level_index]] = array[size - 1].first;
++level_index;
}
}
};
}