2020-03-18 18:43:51 +00:00
# Applying a Catboost Model in ClickHouse {#applying-catboost-model-in-clickhouse}
2019-08-16 06:54:18 +00:00
2019-10-10 12:17:39 +00:00
[CatBoost ](https://catboost.ai ) is a free and open-source gradient boosting library developed at [Yandex ](https://yandex.com/company/ ) for machine learning.
2019-08-22 11:34:56 +00:00
2020-02-03 19:11:18 +00:00
With this instruction, you will learn to apply pre-trained models in ClickHouse by running model inference from SQL.
2019-08-16 06:54:18 +00:00
To apply a CatBoost model in ClickHouse:
2020-03-20 10:10:48 +00:00
1. [Create a Table ](#create-table ).
2. [Insert the Data to the Table ](#insert-data-to-table ).
3. [Integrate CatBoost into ClickHouse ](#integrate-catboost-into-clickhouse ) (Optional step).
4. [Run the Model Inference from SQL ](#run-model-inference ).
2019-08-22 05:45:45 +00:00
For more information about training CatBoost models, see [Training and applying models ](https://catboost.ai/docs/features/training.html#training ).
2019-08-16 06:54:18 +00:00
2020-03-18 18:43:51 +00:00
## Prerequisites {#prerequisites}
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
If you don’ t have the [Docker ](https://docs.docker.com/install/ ) yet, install it.
2019-08-16 06:54:18 +00:00
2019-08-22 11:34:56 +00:00
!!! note "Note"
[Docker ](https://www.docker.com ) is a software platform that allows you to create containers that isolate a CatBoost and ClickHouse installation from the rest of the system.
2019-08-16 06:54:18 +00:00
Before applying a CatBoost model:
**1.** Pull the [Docker image ](https://hub.docker.com/r/yandex/tutorial-catboost-clickhouse ) from the registry:
2020-03-20 10:10:48 +00:00
``` bash
2019-08-16 06:54:18 +00:00
$ docker pull yandex/tutorial-catboost-clickhouse
```
2019-08-22 11:34:56 +00:00
This Docker image contains everything you need to run CatBoost and ClickHouse: code, runtime, libraries, environment variables, and configuration files.
2019-08-16 06:54:18 +00:00
2019-08-22 15:13:36 +00:00
**2.** Make sure the Docker image has been successfully pulled:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` bash
2019-08-16 06:54:18 +00:00
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
2019-10-10 12:17:39 +00:00
yandex/tutorial-catboost-clickhouse latest 622e4d17945b 22 hours ago 1.37GB
2019-08-16 06:54:18 +00:00
```
2019-08-22 15:13:36 +00:00
**3.** Start a Docker container based on this image:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` bash
2019-08-16 06:54:18 +00:00
$ docker run -it -p 8888:8888 yandex/tutorial-catboost-clickhouse
```
2020-03-18 18:43:51 +00:00
## 1. Create a Table {#create-table}
2019-08-16 06:54:18 +00:00
2020-03-19 06:53:47 +00:00
To create a ClickHouse table for the training sample:
2019-08-16 06:54:18 +00:00
2020-03-19 06:53:47 +00:00
**1.** Start ClickHouse console client in the interactive mode:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` bash
2019-08-16 06:54:18 +00:00
$ clickhouse client
```
2019-08-22 11:34:56 +00:00
!!! note "Note"
The ClickHouse server is already running inside the Docker container.
2019-08-16 06:54:18 +00:00
**2.** Create the table using the command:
2020-03-20 10:10:48 +00:00
``` sql
2019-08-16 06:54:18 +00:00
:) CREATE TABLE amazon_train
(
2020-03-20 10:10:48 +00:00
date Date MATERIALIZED today(),
ACTION UInt8,
RESOURCE UInt32,
MGR_ID UInt32,
ROLE_ROLLUP_1 UInt32,
ROLE_ROLLUP_2 UInt32,
ROLE_DEPTNAME UInt32,
ROLE_TITLE UInt32,
ROLE_FAMILY_DESC UInt32,
ROLE_FAMILY UInt32,
2019-08-16 06:54:18 +00:00
ROLE_CODE UInt32
)
2020-01-09 16:42:20 +00:00
ENGINE = MergeTree ORDER BY date
2019-08-16 06:54:18 +00:00
```
2019-10-11 15:36:25 +00:00
**3.** Exit from ClickHouse console client:
2020-03-20 10:10:48 +00:00
``` sql
2019-10-11 15:36:25 +00:00
:) exit
```
2020-03-18 18:43:51 +00:00
## 2. Insert the Data to the Table {#insert-data-to-table}
2019-08-16 06:54:18 +00:00
To insert the data:
2019-10-11 15:36:25 +00:00
**1.** Run the following command:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` bash
2019-10-11 15:36:25 +00:00
$ clickhouse client --host 127.0.0.1 --query 'INSERT INTO amazon_train FORMAT CSVWithNames' < ~/amazon/train.csv
2019-08-16 06:54:18 +00:00
```
2020-03-19 06:53:47 +00:00
**2.** Start ClickHouse console client in the interactive mode:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` bash
2019-10-11 15:36:25 +00:00
$ clickhouse client
2019-08-16 06:54:18 +00:00
```
**3.** Make sure the data has been uploaded:
2020-03-20 10:10:48 +00:00
``` sql
2019-08-16 06:54:18 +00:00
:) SELECT count() FROM amazon_train
2019-10-10 12:17:39 +00:00
2019-08-16 06:54:18 +00:00
SELECT count()
FROM amazon_train
+-count()-+
2019-10-10 12:17:39 +00:00
| 65538 |
2019-08-16 06:54:18 +00:00
+---------+
```
2020-03-18 18:43:51 +00:00
## 3. Integrate CatBoost into ClickHouse {#integrate-catboost-into-clickhouse}
2019-10-11 15:36:25 +00:00
!!! note "Note"
2019-10-14 10:33:39 +00:00
**Optional step.** The Docker image contains everything you need to run CatBoost and ClickHouse.
2019-10-11 15:36:25 +00:00
2019-10-14 10:33:39 +00:00
To integrate CatBoost into ClickHouse:
2019-08-16 06:54:18 +00:00
2019-10-14 12:39:42 +00:00
**1.** Build the evaluation library.
2019-08-16 06:54:18 +00:00
2019-10-14 10:33:39 +00:00
The fastest way to evaluate a CatBoost model is compile `libcatboostmodel.<so|dll|dylib>` library. For more information about how to build the library, see [CatBoost documentation ](https://catboost.ai/docs/concepts/c-plus-plus-api_dynamic-c-pluplus-wrapper.html ).
2019-10-14 13:08:46 +00:00
**2.** Create a new directory anywhere and with any name, for example, `data` and put the created library in it. The Docker image already contains the library `data/libcatboostmodel.so` .
2019-10-14 10:33:39 +00:00
**3.** Create a new directory for config model anywhere and with any name, for example, `models` .
2020-03-20 10:10:48 +00:00
**4.** Create a model configuration file with any name, for example, `models/amazon_model.xml` .
2019-10-14 10:33:39 +00:00
2020-03-20 10:10:48 +00:00
**5.** Describe the model configuration:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` xml
2019-08-16 06:54:18 +00:00
< models >
< model >
<!-- Model type. Now catboost only. -->
< type > catboost< / type >
<!-- Model name. -->
< name > amazon< / name >
<!-- Path to trained model. -->
< path > /home/catboost/tutorial/catboost_model.bin< / path >
<!-- Update interval. -->
< lifetime > 0< / lifetime >
< / model >
< / models >
```
2019-10-14 13:13:26 +00:00
**6.** Add the path to CatBoost and the model configuration to the ClickHouse configuration:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` xml
2019-10-14 10:33:39 +00:00
<!-- File etc/clickhouse - server/config.d/models_config.xml. -->
2019-10-14 13:08:46 +00:00
< catboost_dynamic_library_path > /home/catboost/data/libcatboostmodel.so< / catboost_dynamic_library_path >
2019-10-11 15:36:25 +00:00
< models_config > /home/catboost/models/*_model.xml< / models_config >
2019-08-16 06:54:18 +00:00
```
2020-03-18 18:43:51 +00:00
## 4. Run the Model Inference from SQL {#run-model-inference}
2019-08-16 06:54:18 +00:00
2019-10-10 12:17:39 +00:00
For test model run the ClickHouse client `$ clickhouse client` .
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
Let’ s make sure that the model is working:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` sql
:) SELECT
modelEvaluate('amazon',
2019-08-16 06:54:18 +00:00
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
2020-03-20 10:10:48 +00:00
ROLE_CODE) > 0 AS prediction,
2019-08-16 06:54:18 +00:00
ACTION AS target
FROM amazon_train
LIMIT 10
```
2019-08-22 11:34:56 +00:00
!!! note "Note"
Function [modelEvaluate ](../query_language/functions/other_functions.md#function-modelevaluate ) returns tuple with per-class raw predictions for multiclass models.
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
Let’ s predict the probability:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` sql
:) SELECT
modelEvaluate('amazon',
2019-08-16 06:54:18 +00:00
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) AS prediction,
2020-03-20 10:10:48 +00:00
1. / (1 + exp(-prediction)) AS probability,
2019-08-16 06:54:18 +00:00
ACTION AS target
FROM amazon_train
LIMIT 10
```
2019-08-22 11:34:56 +00:00
!!! note "Note"
More info about [exp() ](../query_language/functions/math_functions.md ) function.
2020-03-20 10:10:48 +00:00
Let’ s calculate LogLoss on the sample:
2019-08-16 06:54:18 +00:00
2020-03-20 10:10:48 +00:00
``` sql
2019-08-16 06:54:18 +00:00
:) SELECT -avg(tg * log(prob) + (1 - tg) * log(1 - prob)) AS logloss
2020-03-20 10:10:48 +00:00
FROM
2019-08-16 06:54:18 +00:00
(
2020-03-20 10:10:48 +00:00
SELECT
modelEvaluate('amazon',
2019-08-16 06:54:18 +00:00
RESOURCE,
MGR_ID,
ROLE_ROLLUP_1,
ROLE_ROLLUP_2,
ROLE_DEPTNAME,
ROLE_TITLE,
ROLE_FAMILY_DESC,
ROLE_FAMILY,
ROLE_CODE) AS prediction,
2020-03-20 10:10:48 +00:00
1. / (1. + exp(-prediction)) AS prob,
2019-08-16 06:54:18 +00:00
ACTION AS tg
FROM amazon_train
)
2019-08-22 11:34:56 +00:00
```
!!! note "Note"
2020-01-08 15:06:06 +00:00
More info about [avg() ](../query_language/agg_functions/reference.md#agg_function-avg ) and [log() ](../query_language/functions/math_functions.md ) functions.
2020-03-19 06:53:47 +00:00
[Original article ](https://clickhouse.tech/docs/en/guides/apply_catboost_model/ ) <!--hide-->