2017-12-28 15:13:23 +00:00
# OnTime
2019-01-24 16:10:05 +00:00
This dataset can be obtained in two ways:
- import from raw data
- download of prepared partitions
## Import From Raw Data
2017-12-28 15:13:23 +00:00
Downloading data:
```bash
2019-03-01 10:10:27 +00:00
for s in `seq 1987 2018`
2017-12-28 15:13:23 +00:00
do
for m in `seq 1 12`
do
2019-03-01 10:10:27 +00:00
wget https://transtats.bts.gov/PREZIP/On_Time_Reporting_Carrier_On_Time_Performance_1987_present_${s}_${m}.zip
2017-12-28 15:13:23 +00:00
done
done
```
(from < https: / / github . com / Percona-Lab / ontime-airline-performance / blob / master / download . sh > )
Creating a table:
2019-09-23 15:31:46 +00:00
```sql
2017-12-28 15:13:23 +00:00
CREATE TABLE `ontime` (
`Year` UInt16,
`Quarter` UInt8,
`Month` UInt8,
`DayofMonth` UInt8,
`DayOfWeek` UInt8,
`FlightDate` Date,
`UniqueCarrier` FixedString(7),
`AirlineID` Int32,
`Carrier` FixedString(2),
`TailNum` String,
`FlightNum` String,
`OriginAirportID` Int32,
`OriginAirportSeqID` Int32,
`OriginCityMarketID` Int32,
`Origin` FixedString(5),
`OriginCityName` String,
`OriginState` FixedString(2),
`OriginStateFips` String,
`OriginStateName` String,
`OriginWac` Int32,
`DestAirportID` Int32,
`DestAirportSeqID` Int32,
`DestCityMarketID` Int32,
`Dest` FixedString(5),
`DestCityName` String,
`DestState` FixedString(2),
`DestStateFips` String,
`DestStateName` String,
`DestWac` Int32,
`CRSDepTime` Int32,
`DepTime` Int32,
`DepDelay` Int32,
`DepDelayMinutes` Int32,
`DepDel15` Int32,
`DepartureDelayGroups` String,
`DepTimeBlk` String,
`TaxiOut` Int32,
`WheelsOff` Int32,
`WheelsOn` Int32,
`TaxiIn` Int32,
`CRSArrTime` Int32,
`ArrTime` Int32,
`ArrDelay` Int32,
`ArrDelayMinutes` Int32,
`ArrDel15` Int32,
`ArrivalDelayGroups` Int32,
`ArrTimeBlk` String,
`Cancelled` UInt8,
`CancellationCode` FixedString(1),
`Diverted` UInt8,
`CRSElapsedTime` Int32,
`ActualElapsedTime` Int32,
`AirTime` Int32,
`Flights` Int32,
`Distance` Int32,
`DistanceGroup` UInt8,
`CarrierDelay` Int32,
`WeatherDelay` Int32,
`NASDelay` Int32,
`SecurityDelay` Int32,
`LateAircraftDelay` Int32,
`FirstDepTime` String,
`TotalAddGTime` String,
`LongestAddGTime` String,
`DivAirportLandings` String,
`DivReachedDest` String,
`DivActualElapsedTime` String,
`DivArrDelay` String,
`DivDistance` String,
`Div1Airport` String,
`Div1AirportID` Int32,
`Div1AirportSeqID` Int32,
`Div1WheelsOn` String,
`Div1TotalGTime` String,
`Div1LongestGTime` String,
`Div1WheelsOff` String,
`Div1TailNum` String,
`Div2Airport` String,
`Div2AirportID` Int32,
`Div2AirportSeqID` Int32,
`Div2WheelsOn` String,
`Div2TotalGTime` String,
`Div2LongestGTime` String,
`Div2WheelsOff` String,
`Div2TailNum` String,
`Div3Airport` String,
`Div3AirportID` Int32,
`Div3AirportSeqID` Int32,
`Div3WheelsOn` String,
`Div3TotalGTime` String,
`Div3LongestGTime` String,
`Div3WheelsOff` String,
`Div3TailNum` String,
`Div4Airport` String,
`Div4AirportID` Int32,
`Div4AirportSeqID` Int32,
`Div4WheelsOn` String,
`Div4TotalGTime` String,
`Div4LongestGTime` String,
`Div4WheelsOff` String,
`Div4TailNum` String,
`Div5Airport` String,
`Div5AirportID` Int32,
`Div5AirportSeqID` Int32,
`Div5WheelsOn` String,
`Div5TotalGTime` String,
`Div5LongestGTime` String,
`Div5WheelsOff` String,
`Div5TailNum` String
) ENGINE = MergeTree(FlightDate, (Year, FlightDate), 8192)
```
Loading data:
```bash
2019-09-23 15:31:46 +00:00
$ for i in *.zip; do echo $i; unzip -cq $i '* .csv' | sed 's/\.00//g' | clickhouse-client --host=example-perftest01j --query="INSERT INTO ontime FORMAT CSVWithNames"; done
2017-12-28 15:13:23 +00:00
```
2019-09-23 15:31:46 +00:00
## Download of Prepared Partitions
2019-01-24 16:10:05 +00:00
```bash
2019-09-23 15:31:46 +00:00
$ curl -O https://clickhouse-datasets.s3.yandex.net/ontime/partitions/ontime.tar
$ tar xvf ontime.tar -C /var/lib/clickhouse # path to ClickHouse data directory
$ # check permissions of unpacked data, fix if required
$ sudo service clickhouse-server restart
$ clickhouse-client --query "select count(*) from datasets.ontime"
2019-01-24 16:10:05 +00:00
```
!!!info
If you will run queries described below, you have to use full table name,
`datasets.ontime` .
## Queries
2017-12-28 15:13:23 +00:00
Q0.
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT avg(c1)
FROM
(
SELECT Year, Month, count(*) AS c1
FROM ontime
GROUP BY Year, Month
);
2017-12-28 15:13:23 +00:00
```
Q1. The number of flights per day from the year 2000 to 2008
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT DayOfWeek, count(*) AS c
FROM ontime
WHERE Year>=2000 AND Year< =2008
GROUP BY DayOfWeek
ORDER BY c DESC;
2017-12-28 15:13:23 +00:00
```
Q2. The number of flights delayed by more than 10 minutes, grouped by the day of the week, for 2000-2008
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT DayOfWeek, count(*) AS c
FROM ontime
WHERE DepDelay>10 AND Year>=2000 AND Year< =2008
GROUP BY DayOfWeek
ORDER BY c DESC;
2017-12-28 15:13:23 +00:00
```
Q3. The number of delays by airport for 2000-2008
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT Origin, count(*) AS c
FROM ontime
WHERE DepDelay>10 AND Year>=2000 AND Year< =2008
GROUP BY Origin
ORDER BY c DESC
LIMIT 10;
2017-12-28 15:13:23 +00:00
```
Q4. The number of delays by carrier for 2007
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT Carrier, count(*)
FROM ontime
WHERE DepDelay>10 AND Year=2007
GROUP BY Carrier
ORDER BY count(*) DESC;
2017-12-28 15:13:23 +00:00
```
Q5. The percentage of delays by carrier for 2007
2019-09-23 15:31:46 +00:00
```sql
2019-05-22 02:20:09 +00:00
SELECT Carrier, c, c2, c*100/c2 as c3
2017-12-28 15:13:23 +00:00
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
AND Year=2007
GROUP BY Carrier
)
ANY INNER JOIN
(
SELECT
Carrier,
count(*) AS c2
FROM ontime
WHERE Year=2007
GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;
```
Better version of the same query:
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT Carrier, avg(DepDelay>10)*100 AS c3
FROM ontime
WHERE Year=2007
GROUP BY Carrier
ORDER BY Carrier
2017-12-28 15:13:23 +00:00
```
Q6. The previous request for a broader range of years, 2000-2008
2019-09-23 15:31:46 +00:00
```sql
2019-05-22 02:20:09 +00:00
SELECT Carrier, c, c2, c*100/c2 as c3
2017-12-28 15:13:23 +00:00
FROM
(
SELECT
Carrier,
count(*) AS c
FROM ontime
WHERE DepDelay>10
2019-06-17 09:06:08 +00:00
AND Year>=2000 AND Year< =2008
2017-12-28 15:13:23 +00:00
GROUP BY Carrier
)
ANY INNER JOIN
(
SELECT
Carrier,
count(*) AS c2
FROM ontime
2019-06-17 09:06:08 +00:00
WHERE Year>=2000 AND Year< =2008
2017-12-28 15:13:23 +00:00
GROUP BY Carrier
) USING Carrier
ORDER BY c3 DESC;
```
Better version of the same query:
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT Carrier, avg(DepDelay>10)*100 AS c3
FROM ontime
WHERE Year>=2000 AND Year< =2008
GROUP BY Carrier
ORDER BY Carrier;
2017-12-28 15:13:23 +00:00
```
Q7. Percentage of flights delayed for more than 10 minutes, by year
2019-09-23 15:31:46 +00:00
```sql
2017-12-28 15:13:23 +00:00
SELECT Year, c1/c2
FROM
(
select
Year,
2019-05-22 02:20:09 +00:00
count(*)*100 as c1
2017-12-28 15:13:23 +00:00
from ontime
WHERE DepDelay>10
GROUP BY Year
)
ANY INNER JOIN
(
select
Year,
count(*) as c2
from ontime
GROUP BY Year
) USING (Year)
2019-06-17 09:06:08 +00:00
ORDER BY Year;
2017-12-28 15:13:23 +00:00
```
Better version of the same query:
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT Year, avg(DepDelay>10)
FROM ontime
GROUP BY Year
ORDER BY Year;
2017-12-28 15:13:23 +00:00
```
Q8. The most popular destinations by the number of directly connected cities for various year ranges
2019-09-23 15:31:46 +00:00
```sql
2019-10-23 15:32:42 +00:00
SELECT DestCityName, uniqExact(OriginCityName) AS u
FROM ontime
WHERE Year >= 2000 and Year < = 2010
2019-06-17 09:06:08 +00:00
GROUP BY DestCityName
2019-10-23 15:32:42 +00:00
ORDER BY u DESC LIMIT 10;
2017-12-28 15:13:23 +00:00
```
Q9.
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT Year, count(*) AS c1
FROM ontime
GROUP BY Year;
2017-12-28 15:13:23 +00:00
```
Q10.
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT
min(Year), max(Year), Carrier, count(*) AS cnt,
sum(ArrDelayMinutes>30) AS flights_delayed,
round(sum(ArrDelayMinutes>30)/count(*),2) AS rate
2017-12-28 15:13:23 +00:00
FROM ontime
WHERE
2019-06-17 09:06:08 +00:00
DayOfWeek NOT IN (6,7) AND OriginState NOT IN ('AK', 'HI', 'PR', 'VI')
AND DestState NOT IN ('AK', 'HI', 'PR', 'VI')
AND FlightDate < '2010-01-01'
2017-12-28 15:13:23 +00:00
GROUP by Carrier
2019-06-17 09:06:08 +00:00
HAVING cnt>100000 and max(Year)>1990
2017-12-28 15:13:23 +00:00
ORDER by rate DESC
LIMIT 1000;
```
Bonus:
2019-09-23 15:31:46 +00:00
```sql
2019-06-17 09:06:08 +00:00
SELECT avg(cnt)
FROM
(
SELECT Year,Month,count(*) AS cnt
FROM ontime
WHERE DepDel15=1
GROUP BY Year,Month
);
2017-12-28 15:13:23 +00:00
2019-06-17 09:06:08 +00:00
SELECT avg(c1) FROM
(
SELECT Year,Month,count(*) AS c1
FROM ontime
GROUP BY Year,Month
);
2017-12-28 15:13:23 +00:00
2019-06-17 09:06:08 +00:00
SELECT DestCityName, uniqExact(OriginCityName) AS u
FROM ontime
GROUP BY DestCityName
ORDER BY u DESC
LIMIT 10;
2017-12-28 15:13:23 +00:00
2019-06-17 09:06:08 +00:00
SELECT OriginCityName, DestCityName, count() AS c
FROM ontime
GROUP BY OriginCityName, DestCityName
ORDER BY c DESC
LIMIT 10;
2017-12-28 15:13:23 +00:00
2019-06-17 09:06:08 +00:00
SELECT OriginCityName, count() AS c
FROM ontime
GROUP BY OriginCityName
ORDER BY c DESC
LIMIT 10;
2017-12-28 15:13:23 +00:00
```
2018-07-30 16:34:55 +00:00
2018-09-04 11:18:59 +00:00
This performance test was created by Vadim Tkachenko. See:
2018-07-30 16:34:55 +00:00
- < https: // www . percona . com / blog / 2009 / 10 / 02 / analyzing-air-traffic-performance-with-infobright-and-monetdb />
- < https: // www . percona . com / blog / 2009 / 10 / 26 / air-traffic-queries-in-luciddb />
- < https: // www . percona . com / blog / 2009 / 11 / 02 / air-traffic-queries-in-infinidb-early-alpha />
- < https: // www . percona . com / blog / 2014 / 04 / 21 / using-apache-hadoop-and-impala-together-with-mysql-for-data-analysis />
- < https: // www . percona . com / blog / 2016 / 01 / 07 / apache-spark-with-air-ontime-performance-data />
- < http: // nickmakos . blogspot . ru / 2012 / 08 / analyzing-air-traffic-performance-with . html >
2018-09-04 11:18:59 +00:00
2018-10-16 10:47:17 +00:00
[Original article ](https://clickhouse.yandex/docs/en/getting_started/example_datasets/ontime/ ) <!--hide-->