ClickHouse/dbms/src/DataStreams/IProfilingBlockInputStream.cpp

403 lines
12 KiB
C++
Raw Normal View History

2011-08-27 22:43:31 +00:00
#include <iomanip>
#include <random>
2011-08-27 22:43:31 +00:00
#include <Interpreters/Quota.h>
#include <Interpreters/ProcessList.h>
#include <DataStreams/IProfilingBlockInputStream.h>
2011-08-27 22:43:31 +00:00
namespace DB
{
namespace ErrorCodes
{
extern const int TOO_MUCH_ROWS;
extern const int TOO_MUCH_BYTES;
extern const int TIMEOUT_EXCEEDED;
extern const int TOO_SLOW;
2017-07-27 21:27:10 +00:00
extern const int LOGICAL_ERROR;
}
2011-08-27 22:43:31 +00:00
IProfilingBlockInputStream::IProfilingBlockInputStream()
{
info.parent = this;
}
2011-09-04 21:23:19 +00:00
Block IProfilingBlockInputStream::read()
2011-08-27 22:43:31 +00:00
{
collectAndSendTotalRowsApprox();
if (!info.started)
{
info.total_stopwatch.start();
info.started = true;
}
2012-05-09 08:16:09 +00:00
Block res;
if (is_cancelled.load(std::memory_order_seq_cst))
return res;
2012-05-31 00:47:05 +00:00
if (!limit_exceeded_need_break)
res = readImpl();
2011-08-27 22:43:31 +00:00
if (res)
{
info.update(res);
if (enabled_extremes)
updateExtremes(res);
if (!checkLimits())
limit_exceeded_need_break = true;
if (quota != nullptr)
checkQuota(res);
}
else
{
/** If the thread is over, then we will ask all children to abort the execution.
* This makes sense when running a query with LIMIT
* - there is a situation when all the necessary data has already been read,
* but `children sources are still working,
* herewith they can work in separate threads or even remotely.
*/
cancel();
}
2011-09-25 03:37:09 +00:00
progress(Progress(res.rows(), res.bytes()));
return res;
}
void IProfilingBlockInputStream::readPrefix()
{
readPrefixImpl();
2016-05-31 01:04:34 +00:00
for (auto & child : children)
child->readPrefix();
}
2013-09-13 20:33:09 +00:00
void IProfilingBlockInputStream::readSuffix()
{
for (auto & child : children)
child->readSuffix();
2013-09-13 20:33:09 +00:00
readSuffixImpl();
2013-09-13 20:33:09 +00:00
}
void IProfilingBlockInputStream::updateExtremes(Block & block)
{
size_t columns = block.columns();
if (!extremes)
{
extremes = block.cloneEmpty();
for (size_t i = 0; i < columns; ++i)
{
Field min_value;
Field max_value;
block.safeGetByPosition(i).column->getExtremes(min_value, max_value);
ColumnPtr & column = extremes.safeGetByPosition(i).column;
if (auto converted = column->convertToFullColumnIfConst())
column = converted;
column->insert(min_value);
column->insert(max_value);
}
}
else
{
for (size_t i = 0; i < columns; ++i)
{
ColumnPtr & column = extremes.safeGetByPosition(i).column;
Field min_value = (*column)[0];
Field max_value = (*column)[1];
Field cur_min_value;
Field cur_max_value;
block.safeGetByPosition(i).column->getExtremes(cur_min_value, cur_max_value);
if (cur_min_value < min_value)
min_value = cur_min_value;
if (cur_max_value > max_value)
max_value = cur_max_value;
column = column->cloneEmpty();
column->insert(min_value);
column->insert(max_value);
}
}
}
bool IProfilingBlockInputStream::checkLimits()
{
auto handle_overflow_mode = [] (OverflowMode mode, const String & message, int code)
{
switch (mode)
{
case OverflowMode::THROW:
throw Exception(message, code);
case OverflowMode::BREAK:
return false;
default:
throw Exception("Logical error: unknown overflow mode", ErrorCodes::LOGICAL_ERROR);
}
};
if (limits.mode == LIMITS_CURRENT)
{
/// Check current stream limitations (i.e. max_result_{rows,bytes})
if (limits.max_rows_to_read && info.rows > limits.max_rows_to_read)
return handle_overflow_mode(limits.read_overflow_mode,
std::string("Limit for result rows")
+ " exceeded: read " + toString(info.rows)
+ " rows, maximum: " + toString(limits.max_rows_to_read),
ErrorCodes::TOO_MUCH_ROWS);
if (limits.max_bytes_to_read && info.bytes > limits.max_bytes_to_read)
return handle_overflow_mode(limits.read_overflow_mode,
std::string("Limit for result bytes (uncompressed)")
+ " exceeded: read " + toString(info.bytes)
+ " bytes, maximum: " + toString(limits.max_bytes_to_read),
ErrorCodes::TOO_MUCH_BYTES);
}
if (limits.max_execution_time != 0
&& info.total_stopwatch.elapsed() > static_cast<UInt64>(limits.max_execution_time.totalMicroseconds()) * 1000)
return handle_overflow_mode(limits.timeout_overflow_mode,
"Timeout exceeded: elapsed " + toString(info.total_stopwatch.elapsedSeconds())
+ " seconds, maximum: " + toString(limits.max_execution_time.totalMicroseconds() / 1000000.0),
ErrorCodes::TIMEOUT_EXCEEDED);
return true;
}
void IProfilingBlockInputStream::checkQuota(Block & block)
{
switch (limits.mode)
{
case LIMITS_TOTAL:
/// Checked in `progress` method.
break;
case LIMITS_CURRENT:
{
time_t current_time = time(nullptr);
double total_elapsed = info.total_stopwatch.elapsedSeconds();
quota->checkAndAddResultRowsBytes(current_time, block.rows(), block.bytes());
quota->checkAndAddExecutionTime(current_time, Poco::Timespan((total_elapsed - prev_elapsed) * 1000000.0));
prev_elapsed = total_elapsed;
break;
}
default:
throw Exception("Logical error: unknown limits mode.", ErrorCodes::LOGICAL_ERROR);
}
2011-08-27 22:43:31 +00:00
}
2012-05-17 19:15:53 +00:00
void IProfilingBlockInputStream::progressImpl(const Progress & value)
2012-05-17 19:15:53 +00:00
{
if (progress_callback)
progress_callback(value);
if (process_list_elem)
{
if (!process_list_elem->updateProgressIn(value))
cancel();
/// The total amount of data processed or intended for processing in all leaf sources, possibly on remote servers.
size_t rows_processed = process_list_elem->progress_in.rows;
size_t bytes_processed = process_list_elem->progress_in.bytes;
size_t total_rows_estimate = std::max(rows_processed, process_list_elem->progress_in.total_rows.load(std::memory_order_relaxed));
/** Check the restrictions on the amount of data to read, the speed of the query, the quota on the amount of data to read.
* NOTE: Maybe it makes sense to have them checked directly in ProcessList?
*/
if (limits.mode == LIMITS_TOTAL
&& ((limits.max_rows_to_read && total_rows_estimate > limits.max_rows_to_read)
|| (limits.max_bytes_to_read && bytes_processed > limits.max_bytes_to_read)))
{
switch (limits.read_overflow_mode)
{
case OverflowMode::THROW:
{
if (limits.max_rows_to_read && total_rows_estimate > limits.max_rows_to_read)
throw Exception("Limit for rows to read exceeded: " + toString(total_rows_estimate)
+ " rows read (or to read), maximum: " + toString(limits.max_rows_to_read),
ErrorCodes::TOO_MUCH_ROWS);
else
throw Exception("Limit for (uncompressed) bytes to read exceeded: " + toString(bytes_processed)
+ " bytes read, maximum: " + toString(limits.max_bytes_to_read),
ErrorCodes::TOO_MUCH_BYTES);
break;
}
case OverflowMode::BREAK:
{
/// For `break`, we will stop only if so many lines were actually read, and not just supposed to be read.
if ((limits.max_rows_to_read && rows_processed > limits.max_rows_to_read)
|| (limits.max_bytes_to_read && bytes_processed > limits.max_bytes_to_read))
{
cancel();
}
break;
}
default:
throw Exception("Logical error: unknown overflow mode", ErrorCodes::LOGICAL_ERROR);
}
}
size_t total_rows = process_list_elem->progress_in.total_rows;
if (limits.min_execution_speed || (total_rows && limits.timeout_before_checking_execution_speed != 0))
{
double total_elapsed = info.total_stopwatch.elapsedSeconds();
if (total_elapsed > limits.timeout_before_checking_execution_speed.totalMicroseconds() / 1000000.0)
{
if (limits.min_execution_speed && rows_processed / total_elapsed < limits.min_execution_speed)
throw Exception("Query is executing too slow: " + toString(rows_processed / total_elapsed)
+ " rows/sec., minimum: " + toString(limits.min_execution_speed),
ErrorCodes::TOO_SLOW);
size_t total_rows = process_list_elem->progress_in.total_rows;
/// If the predicted execution time is longer than `max_execution_time`.
if (limits.max_execution_time != 0 && total_rows)
{
double estimated_execution_time_seconds = total_elapsed * (static_cast<double>(total_rows) / rows_processed);
if (estimated_execution_time_seconds > limits.max_execution_time.totalSeconds())
throw Exception("Estimated query execution time (" + toString(estimated_execution_time_seconds) + " seconds)"
+ " is too long. Maximum: " + toString(limits.max_execution_time.totalSeconds())
+ ". Estimated rows to process: " + toString(total_rows),
ErrorCodes::TOO_SLOW);
}
}
}
if (quota != nullptr && limits.mode == LIMITS_TOTAL)
{
quota->checkAndAddReadRowsBytes(time(0), value.rows, value.bytes);
}
}
2012-05-17 19:15:53 +00:00
}
2011-08-27 22:43:31 +00:00
void IProfilingBlockInputStream::cancel()
{
bool old_val = false;
if (!is_cancelled.compare_exchange_strong(old_val, true, std::memory_order_seq_cst, std::memory_order_relaxed))
return;
for (auto & child : children)
if (IProfilingBlockInputStream * p_child = dynamic_cast<IProfilingBlockInputStream *>(&*child))
p_child->cancel();
}
void IProfilingBlockInputStream::setProgressCallback(const ProgressCallback & callback)
2012-05-09 15:15:45 +00:00
{
progress_callback = callback;
for (auto & child : children)
if (IProfilingBlockInputStream * p_child = dynamic_cast<IProfilingBlockInputStream *>(&*child))
p_child->setProgressCallback(callback);
2012-05-09 08:16:09 +00:00
}
void IProfilingBlockInputStream::setProcessListElement(ProcessListElement * elem)
{
process_list_elem = elem;
for (auto & child : children)
if (IProfilingBlockInputStream * p_child = dynamic_cast<IProfilingBlockInputStream *>(&*child))
p_child->setProcessListElement(elem);
}
const Block & IProfilingBlockInputStream::getTotals()
{
if (totals)
return totals;
for (auto & child : children)
{
if (IProfilingBlockInputStream * p_child = dynamic_cast<IProfilingBlockInputStream *>(&*child))
{
const Block & res = p_child->getTotals();
if (res)
return res;
}
}
return totals;
}
const Block & IProfilingBlockInputStream::getExtremes() const
{
if (extremes)
return extremes;
for (const auto & child : children)
{
if (const IProfilingBlockInputStream * p_child = dynamic_cast<const IProfilingBlockInputStream *>(&*child))
{
const Block & res = p_child->getExtremes();
if (res)
return res;
}
}
return extremes;
}
void IProfilingBlockInputStream::collectTotalRowsApprox()
{
2017-11-01 13:35:34 +00:00
bool old_val = false;
if (!collected_total_rows_approx.compare_exchange_strong(old_val, true))
return;
for (auto & child : children)
{
if (IProfilingBlockInputStream * p_child = dynamic_cast<IProfilingBlockInputStream *>(&*child))
{
p_child->collectTotalRowsApprox();
total_rows_approx += p_child->total_rows_approx;
}
}
}
void IProfilingBlockInputStream::collectAndSendTotalRowsApprox()
{
if (collected_total_rows_approx)
return;
collectTotalRowsApprox();
progressImpl(Progress(0, 0, total_rows_approx));
}
2011-08-27 22:43:31 +00:00
}