ClickHouse/dbms/src/Functions/FunctionsFindCluster.h

344 lines
11 KiB
C++
Raw Normal View History

#pragma once
#include <cmath>
#include <Core/FieldVisitors.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeString.h>
#include <DataTypes/DataTypeArray.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnsNumber.h>
#include <Functions/IFunction.h>
#include <Common/Arena.h>
#include <Core/StringRef.h>
#include <Common/HashTable/HashMap.h>
#include <DataTypes/EnrichedDataTypePtr.h>
namespace DB
{
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
}
enum ClusterOperation
{
FindClusterIndex = 0,
FindCentroidValue = 1
};
/// Centroids of the clusters to match, as well as the cluster finding logic.
///
/// The centroid values are converted to Float64 for easier coding of
/// distance calculations.
///
/// We assume to have 10th to 100th centroids, usually of type Float64, as a typical use case.
/// While it is possible to sort centroids and use a modification of a binary search to find the
/// nearest centroid, we think for arrays of 10th to 100th this might be an overkill.
///
/// Also, even though centroids of other types are feasible, this first implementation
/// lacks support of them for simplicity. Date, DateTime and Strings (eg. with the
/// Levenshtein distance) could be theoretically supported, as well as custom distance
/// functions (eg. Hamming distance) using Clickhouse lambdas.
template<typename CentroidsType>
class Centroids
{
public:
Centroids() {}
Centroids(const Centroids & c): centroids(c.centroids) {}
virtual ~Centroids() {}
bool fill (const IColumn* centroids_array_untyped)
{
const ColumnArray * centroids_array = typeid_cast<const ColumnArray *>(centroids_array_untyped);
if (centroids_array)
{
if (centroids_array->empty())
throw Exception{"Centroids array must be not empty", ErrorCodes::ILLEGAL_COLUMN};
for (size_t k = 0; k < centroids_array->size(); k++)
{
const Field& tmp_field = (*centroids_array)[k];
CentroidsType value;
if (!tmp_field.tryGet(value))
return false;
centroids.push_back(Float64(value));
}
}
else
{
const ColumnConst<Array> * const_centroids_array = typeid_cast<const ColumnConst<Array> *>(centroids_array_untyped);
if (!const_centroids_array)
return false;
if (const_centroids_array->getData().empty())
throw Exception{"Centroids array must be not empty", ErrorCodes::ILLEGAL_COLUMN};
for (size_t k = 0; k < const_centroids_array->getData().size(); ++k)
{
const Field& tmp_field = (const_centroids_array->getData())[k];
CentroidsType value;
if (!tmp_field.tryGet(value))
return false;
centroids.push_back(Float64(value));
}
}
return true;
}
template <typename InputType>
bool findCluster(
const IColumn* in_untyped,
IColumn* out_untyped,
ClusterOperation operation)
{
if (operation == ClusterOperation::FindClusterIndex)
return findClusterTyped<InputType, UInt64>(in_untyped, out_untyped, operation);
else if (operation == ClusterOperation::FindCentroidValue)
return findClusterTyped<InputType, CentroidsType>(in_untyped, out_untyped, operation);
throw Exception{"Unexpected error in findCluster* function", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
}
private:
std::vector<Float64> centroids;
// Centroids array has the same size as number of clusters. We expect it
// to be small, maybe 10s or 100s in most real life situation, so we
// choose the naive implementation
size_t find_centroid(CentroidsType x)
{
Float64 y = Float64(x);
// Centroids array has to have at least one element, and if it has only one element,
// it is also the result of this Function.
Float64 distance = abs(centroids[0]-y);
size_t index = 0;
// Check if we have more clusters and if we have, whether some is closer to src[i]
for (size_t j = 1; j < centroids.size(); ++j)
{
Float64 next_distance = abs(centroids[j]-y);
if (next_distance < distance)
{
distance = next_distance;
index = j;
}
}
// Index of the closest cluster, or 0 in case of just one cluster
return index;
}
template <typename InputType, typename OutputType>
bool findClusterTyped(
const IColumn* in_untyped,
IColumn* out_untyped,
ClusterOperation operation)
{
ColumnVector<OutputType> * out = typeid_cast<ColumnVector<OutputType> *>(out_untyped);
if (!out)
return false;
PaddedPODArray<OutputType> & dst = out->getData();
const auto in_vector = typeid_cast<const ColumnVector<InputType> *>(in_untyped);
if (in_vector)
{
const PaddedPODArray<InputType> & src = in_vector->getData();
if (operation == ClusterOperation::FindClusterIndex)
for (size_t i = 0; i < src.size(); ++i)
// Note that array indexes start with 1 in Clickhouse
dst.push_back(UInt64(find_centroid(CentroidsType(src[i]))+1));
else if (operation == ClusterOperation::FindCentroidValue)
for (size_t i = 0; i < src.size(); ++i)
dst.push_back(centroids[find_centroid(CentroidsType(src[i]))]);
else
throw Exception{"Unexpected error in findCluster* function", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
return true;
}
else
{
const auto in_const = typeid_cast<const ColumnConst<InputType> *>(in_untyped);
if (!in_const)
return false;
if (operation == ClusterOperation::FindClusterIndex)
// Note that array indexes start with 1 in Clickhouse
dst.push_back(UInt64(find_centroid(CentroidsType(in_const->getData()))+1));
else if (operation == ClusterOperation::FindCentroidValue)
dst.push_back(centroids[find_centroid(CentroidsType(in_const->getData()))]);
else
throw Exception{"Unexpected error in findCluster* function", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
}
return true;
}
};
/** findClusterIndex(x, centroids_array) - find index of element in centroids_array with the value nearest to x
* findClusterValue(x, centroids_array) - find value of element in centroids_array with the value nearest to x
*
* Types:
* findClusterIndex(T, Array(T)) -> UInt64
* findClusterValue(T, Array(T)) -> T
*
* T can be any numeric type.
*
*/
class FunctionFindClusterIndex : public IFunction
{
public:
static constexpr auto name = "findClusterIndex";
static FunctionPtr create(const Context &) { return std::make_shared<FunctionFindClusterIndex>(); }
String getName() const override
{
return FunctionFindClusterIndex::name;
}
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
const auto args_size = arguments.size();
if (args_size != 2)
throw Exception{
"Number of arguments for function " + getName() + " doesn't match: passed " +
toString(args_size) + ", should be 2",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH};
const auto type_x = arguments[0];
if (!type_x->isNumeric())
throw Exception{"Unsupported type " + type_x->getName()
+ " of first argument of function " + getName()
+ ", must be a numeric type.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
const DataTypeArray * type_arr_from = typeid_cast<const DataTypeArray *>(arguments[1].get());
if (!type_arr_from)
throw Exception{"Second argument of function " + getName()
+ ", must be array.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
return std::make_shared<DataTypeUInt64>();
}
void executeImpl(Block & block, const ColumnNumbers & arguments, const size_t result) override
{
const auto in_untyped = block.safeGetByPosition(arguments[0]).column.get();
const auto centroids_array_untyped = block.safeGetByPosition(arguments[1]).column.get();
auto column_result = block.safeGetByPosition(result).type->createColumn();
auto out_untyped = column_result.get();
if ( !executeByCentroidsType<UInt8>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<UInt16>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<UInt32>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<UInt64>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<Int8>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<Int16>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<Int32>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<Int64>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<Float32>(in_untyped, out_untyped, centroids_array_untyped)
&& !executeByCentroidsType<Float64>(in_untyped, out_untyped, centroids_array_untyped)
)
{
throw Exception{
"Function " + getName() + " expects centroids_array of a numeric type",
ErrorCodes::ILLEGAL_COLUMN};
}
block.safeGetByPosition(result).column = column_result;
}
protected:
virtual ClusterOperation getOperation()
{
return ClusterOperation::FindClusterIndex;
}
template <typename CentroidsType>
bool executeByCentroidsType(
const IColumn* in_untyped,
IColumn* out_untyped,
const IColumn* centroids_array_untyped)
{
Centroids<typename NearestFieldType<CentroidsType>::Type> centroids;
if (!centroids.fill(centroids_array_untyped))
return false;
if ( !centroids.template findCluster<UInt8>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<UInt16>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<UInt32>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<UInt64>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<Int8>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<Int16>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<Int32>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<Int64>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<Float32>(in_untyped, out_untyped, getOperation())
&& !centroids.template findCluster<Float64>(in_untyped, out_untyped, getOperation())
)
{
throw Exception{
"Illegal column " + in_untyped->getName() + " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
return true;
}
};
class FunctionFindClusterValue : public FunctionFindClusterIndex
{
public:
static constexpr auto name = "findClusterValue";
static FunctionPtr create(const Context &) { return std::make_shared<FunctionFindClusterValue>(); }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
FunctionFindClusterIndex::getReturnTypeImpl(arguments);
const DataTypeArray * type_arr_from = typeid_cast<const DataTypeArray *>(arguments[1].get());
return type_arr_from->getNestedType();
}
String getName() const override
{
return FunctionFindClusterValue::name;
}
protected:
ClusterOperation getOperation() override
{
return ClusterOperation::FindCentroidValue;
}
};
}