ClickHouse/dbms/src/Functions/FunctionsArray.cpp

2949 lines
109 KiB
C++
Raw Normal View History

#include <Functions/FunctionsArray.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <Functions/FunctionFactory.h>
#include <Functions/FunctionsConversion.h>
#include <Functions/Conditional/getArrayType.h>
#include <Functions/Conditional/CondException.h>
#include <Common/HashTable/HashMap.h>
#include <Common/HashTable/ClearableHashMap.h>
#include <Parsers/ExpressionListParsers.h>
#include <Parsers/parseQuery.h>
#include <Parsers/ASTExpressionList.h>
#include <Parsers/ASTLiteral.h>
#include <Interpreters/AggregationCommon.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnAggregateFunction.h>
2017-01-17 18:03:32 +00:00
#include <tuple>
#include <array>
namespace DB
{
2016-12-10 06:22:03 +00:00
/// Implementation of FunctionArray.
2016-12-10 06:22:03 +00:00
String FunctionArray::getName() const
{
return name;
}
FunctionPtr FunctionArray::create(const Context & context)
{
return std::make_shared<FunctionArray>(context);
}
FunctionArray::FunctionArray(const Context & context)
: context(context)
{
}
namespace
{
/// Is there at least one numeric argument among the specified ones?
bool foundNumericType(const DataTypes & args)
{
for (size_t i = 0; i < args.size(); ++i)
{
if (args[i]->behavesAsNumber())
return true;
else if (!args[i]->isNull())
return false;
}
return false;
}
/// Check if the specified arguments have the same type up to nullability or nullity.
bool hasArrayIdenticalTypes(const DataTypes & args)
{
std::string first_type_name;
for (size_t i = 0; i < args.size(); ++i)
{
if (!args[i]->isNull())
{
const IDataType * observed_type = DataTypeTraits::removeNullable(args[i]).get();
const std::string & name = observed_type->getName();
if (first_type_name.empty())
first_type_name = name;
else if (name != first_type_name)
return false;
}
}
return true;
}
/// Given a set, 'args', of types that have been deemed to be identical by the
/// function hasArrayIdenticalTypes(), deduce the element type of an array that
/// would be constructed from a set of values V, such that, for each i, the
/// type of V[i] is args[i].
DataTypePtr getArrayElementType(const DataTypes & args)
{
bool found_null = false;
bool found_nullable = false;
const DataTypePtr * ret = nullptr;
for (size_t i = 0; i < args.size(); ++i)
{
const auto & type = args[i];
if (type->isNull())
found_null = true;
else if (type->isNullable())
{
ret = &type;
found_nullable = true;
break;
}
else
ret = &type;
}
if (found_nullable)
return *ret;
else if (found_null)
{
if (ret != nullptr)
return std::make_shared<DataTypeNullable>(*ret);
else
return std::make_shared<DataTypeNull>();
}
else
{
if (ret == nullptr)
throw Exception{"getArrayElementType: internal error", ErrorCodes::LOGICAL_ERROR};
else
return *ret;
}
}
template <typename T0, typename T1>
bool tryAddField(DataTypePtr type_res, const Field & f, Array & arr)
{
if (typeid_cast<const T0 *>(type_res.get()))
{
if (f.isNull())
arr.emplace_back();
else
arr.push_back(applyVisitor(FieldVisitorConvertToNumber<typename T1::FieldType>(), f));
return true;
}
return false;
}
}
bool FunctionArray::addField(DataTypePtr type_res, const Field & f, Array & arr) const
{
/// Otherwise, it is necessary
if ( tryAddField<DataTypeUInt8, DataTypeUInt64>(type_res, f, arr)
|| tryAddField<DataTypeUInt16, DataTypeUInt64>(type_res, f, arr)
|| tryAddField<DataTypeUInt32, DataTypeUInt64>(type_res, f, arr)
|| tryAddField<DataTypeUInt64, DataTypeUInt64>(type_res, f, arr)
|| tryAddField<DataTypeInt8, DataTypeInt64>(type_res, f, arr)
|| tryAddField<DataTypeInt16, DataTypeInt64>(type_res, f, arr)
|| tryAddField<DataTypeInt32, DataTypeInt64>(type_res, f, arr)
|| tryAddField<DataTypeInt64, DataTypeInt64>(type_res, f, arr)
|| tryAddField<DataTypeFloat32, DataTypeFloat64>(type_res, f, arr)
|| tryAddField<DataTypeFloat64, DataTypeFloat64>(type_res, f, arr) )
return true;
else
{
throw Exception{"Illegal result type " + type_res->getName() + " of function " + getName(),
ErrorCodes::LOGICAL_ERROR};
}
}
const DataTypePtr & FunctionArray::getScalarType(const DataTypePtr & type)
{
const auto array = typeid_cast<const DataTypeArray *>(type.get());
if (!array)
return type;
return getScalarType(array->getNestedType());
}
DataTypeTraits::EnrichedDataTypePtr FunctionArray::getLeastCommonType(const DataTypes & arguments) const
{
DataTypeTraits::EnrichedDataTypePtr result_type;
try
{
result_type = Conditional::getArrayType(arguments);
}
catch (const Conditional::CondException & ex)
{
/// Translate a context-free error into a contextual error.
if (ex.getCode() == Conditional::CondErrorCodes::TYPE_DEDUCER_ILLEGAL_COLUMN_TYPE)
throw Exception{"Illegal type of column " + ex.getMsg1() +
" in array", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
else if (ex.getCode() == Conditional::CondErrorCodes::TYPE_DEDUCER_UPSCALING_ERROR)
throw Exception("Arguments of function " + getName() + " are not upscalable "
"to a common type without loss of precision.",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
else
throw Exception{"An unexpected error has occurred in function " + getName(),
ErrorCodes::LOGICAL_ERROR};
}
return result_type;
}
DataTypePtr FunctionArray::getReturnTypeImpl(const DataTypes & arguments) const
{
if (arguments.empty())
throw Exception{"Function array requires at least one argument.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH};
if (foundNumericType(arguments))
{
/// Since we have found at least one numeric argument, we infer that all
/// the arguments are numeric up to nullity. Let's determine the least
/// common type.
auto enriched_result_type = getLeastCommonType(arguments);
return std::make_shared<DataTypeArray>(enriched_result_type);
}
else
{
/// Otherwise all the arguments must have the same type up to nullability or nullity.
if (!hasArrayIdenticalTypes(arguments))
throw Exception{"Arguments for function array must have same type or behave as number.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
return std::make_shared<DataTypeArray>(getArrayElementType(arguments));
}
}
void FunctionArray::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
size_t num_elements = arguments.size();
bool is_const = true;
for (const auto arg_num : arguments)
{
if (!block.safeGetByPosition(arg_num).column->isConst())
{
is_const = false;
break;
}
}
const DataTypePtr & return_type = block.safeGetByPosition(result).type;
const DataTypePtr & elem_type = static_cast<const DataTypeArray &>(*return_type).getNestedType();
if (is_const)
{
const DataTypePtr & observed_type = DataTypeTraits::removeNullable(elem_type);
Array arr;
for (const auto arg_num : arguments)
{
const auto & elem = block.safeGetByPosition(arg_num);
if (DataTypeTraits::removeNullable(elem.type)->getName() == observed_type->getName())
{
/// If an element of the same type as the result, just add it in response
arr.push_back((*elem.column)[0]);
}
else if (elem.type->isNull())
arr.emplace_back();
else
{
/// Otherwise, you need to cast it to the result type
addField(observed_type, (*elem.column)[0], arr);
}
}
const auto first_arg = block.safeGetByPosition(arguments[0]);
block.safeGetByPosition(result).column = std::make_shared<ColumnConstArray>(
first_arg.column->size(), arr, return_type);
}
else
{
size_t block_size = block.rows();
/** If part of columns have not same type as common type of all elements of array,
* then convert them to common type.
* If part of columns are constants,
* then convert them to full columns.
*/
Columns columns_holder(num_elements);
const IColumn * columns[num_elements];
for (size_t i = 0; i < num_elements; ++i)
{
const auto & arg = block.safeGetByPosition(arguments[i]);
String elem_type_name = elem_type->getName();
ColumnPtr preprocessed_column = arg.column;
if (arg.type->getName() != elem_type_name)
{
Block temporary_block
{
{
arg.column,
arg.type,
arg.name
},
{
std::make_shared<ColumnConstString>(block_size, elem_type_name),
std::make_shared<DataTypeString>(),
""
},
{
nullptr,
elem_type,
""
}
};
FunctionCast func_cast(context);
{
DataTypePtr unused_return_type;
ColumnsWithTypeAndName arguments{ temporary_block.getByPosition(0), temporary_block.getByPosition(1) };
std::vector<ExpressionAction> unused_prerequisites;
/// Prepares function to execution. TODO It is not obvious.
func_cast.getReturnTypeAndPrerequisites(arguments, unused_return_type, unused_prerequisites);
}
func_cast.execute(temporary_block, {0, 1}, 2);
preprocessed_column = temporary_block.getByPosition(2).column;
}
if (auto materialized_column = preprocessed_column->convertToFullColumnIfConst())
preprocessed_column = materialized_column;
columns_holder[i] = std::move(preprocessed_column);
columns[i] = columns_holder[i].get();
}
/** Create and fill the result array.
*/
auto out = std::make_shared<ColumnArray>(elem_type->createColumn());
IColumn & out_data = out->getData();
IColumn::Offsets_t & out_offsets = out->getOffsets();
out_data.reserve(block_size * num_elements);
out_offsets.resize(block_size);
IColumn::Offset_t current_offset = 0;
for (size_t i = 0; i < block_size; ++i)
{
for (size_t j = 0; j < num_elements; ++j)
out_data.insertFrom(*columns[j], i);
current_offset += num_elements;
out_offsets[i] = current_offset;
}
block.safeGetByPosition(result).column = out;
}
}
/// Implementation of FunctionArrayElement.
namespace ArrayImpl
{
class NullMapBuilder
{
public:
operator bool() const { return (src_nullable_col != nullptr) || (src_array != nullptr); }
bool operator!() const { return (src_nullable_col == nullptr) && (src_array == nullptr); }
void initSource(const ColumnNullable & src_nullable_col_)
{
src_nullable_col = &src_nullable_col_;
}
void initSource(const Array & src_array_)
{
src_array = &src_array_;
}
void initSink(size_t s)
{
sink_null_map = std::make_shared<ColumnUInt8>(s);
size = s;
}
void update(size_t from)
{
if (index >= size)
throw Exception{"Logical error: index passes to NullMapBuilder is out of range of column.", ErrorCodes::LOGICAL_ERROR};
bool is_null;
if (src_nullable_col != nullptr)
is_null = src_nullable_col->isNullAt(from);
else
is_null = (*src_array)[from].isNull();
auto & null_map_data = static_cast<ColumnUInt8 &>(*sink_null_map).getData();
null_map_data[index] = is_null ? 1 : 0;
++index;
}
void update()
{
if (index >= size)
throw Exception{"Logical error: index passes to NullMapBuilder is out of range of column.", ErrorCodes::LOGICAL_ERROR};
auto & null_map_data = static_cast<ColumnUInt8 &>(*sink_null_map).getData();
null_map_data[index] = 0;
++index;
}
ColumnPtr getNullMap() const { return sink_null_map; }
private:
const ColumnNullable * src_nullable_col = nullptr;
const Array * src_array = nullptr;
ColumnPtr sink_null_map;
size_t size = 0;
size_t index = 0;
};
}
namespace
{
template <typename T>
struct ArrayElementNumImpl
{
/** Implementation for constant index.
* If negative = false - index is from beginning of array, started from 1.
* If negative = true - index is from end of array, started from -1.
*/
template <bool negative>
static void vectorConst(
const PaddedPODArray<T> & data, const ColumnArray::Offsets_t & offsets,
const ColumnArray::Offset_t index,
PaddedPODArray<T> & result, ArrayImpl::NullMapBuilder & builder)
{
size_t size = offsets.size();
result.resize(size);
ColumnArray::Offset_t current_offset = 0;
for (size_t i = 0; i < size; ++i)
{
size_t array_size = offsets[i] - current_offset;
if (index < array_size)
{
size_t j = !negative ? (current_offset + index) : (offsets[i] - index - 1);
result[i] = data[j];
if (builder)
builder.update(j);
}
else
{
result[i] = T();
if (builder)
builder.update();
}
current_offset = offsets[i];
}
}
/** Implementation for non-constant index.
*/
template <typename TIndex>
static void vector(
const PaddedPODArray<T> & data, const ColumnArray::Offsets_t & offsets,
const PaddedPODArray<TIndex> & indices,
PaddedPODArray<T> & result, ArrayImpl::NullMapBuilder & builder)
{
size_t size = offsets.size();
result.resize(size);
ColumnArray::Offset_t current_offset = 0;
for (size_t i = 0; i < size; ++i)
{
size_t array_size = offsets[i] - current_offset;
TIndex index = indices[i];
if (index > 0 && static_cast<size_t>(index) <= array_size)
{
size_t j = current_offset + index - 1;
result[i] = data[j];
if (builder)
builder.update(j);
}
else if (index < 0 && static_cast<size_t>(-index) <= array_size)
{
size_t j = offsets[i] + index;
result[i] = data[j];
if (builder)
builder.update(j);
}
else
{
result[i] = T();
if (builder)
builder.update();
}
current_offset = offsets[i];
}
}
};
struct ArrayElementStringImpl
{
/** Implementation for constant index.
* If negative = false - index is from beginning of array, started from 1.
* If negative = true - index is from end of array, started from -1.
*/
template <bool negative>
static void vectorConst(
const ColumnString::Chars_t & data, const ColumnArray::Offsets_t & offsets, const ColumnString::Offsets_t & string_offsets,
const ColumnArray::Offset_t index,
ColumnString::Chars_t & result_data, ColumnArray::Offsets_t & result_offsets,
ArrayImpl::NullMapBuilder & builder)
{
size_t size = offsets.size();
result_offsets.resize(size);
result_data.reserve(data.size());
ColumnArray::Offset_t current_offset = 0;
ColumnArray::Offset_t current_result_offset = 0;
for (size_t i = 0; i < size; ++i)
{
size_t array_size = offsets[i] - current_offset;
if (index < array_size)
{
size_t adjusted_index = !negative ? index : (array_size - index - 1);
size_t j = (current_offset == 0 && adjusted_index == 0) ? 0 : current_offset + adjusted_index;
if (builder)
builder.update(j);
ColumnArray::Offset_t string_pos = current_offset == 0 && adjusted_index == 0
? 0
: string_offsets[current_offset + adjusted_index - 1];
ColumnArray::Offset_t string_size = string_offsets[current_offset + adjusted_index] - string_pos;
result_data.resize(current_result_offset + string_size);
memcpySmallAllowReadWriteOverflow15(&result_data[current_result_offset], &data[string_pos], string_size);
current_result_offset += string_size;
result_offsets[i] = current_result_offset;
}
else
{
/// Insert an empty row.
result_data.resize(current_result_offset + 1);
result_data[current_result_offset] = 0;
current_result_offset += 1;
result_offsets[i] = current_result_offset;
if (builder)
builder.update();
}
current_offset = offsets[i];
}
}
/** Implementation for non-constant index.
*/
template <typename TIndex>
static void vector(
const ColumnString::Chars_t & data, const ColumnArray::Offsets_t & offsets, const ColumnString::Offsets_t & string_offsets,
const PaddedPODArray<TIndex> & indices,
ColumnString::Chars_t & result_data, ColumnArray::Offsets_t & result_offsets,
ArrayImpl::NullMapBuilder & builder)
{
size_t size = offsets.size();
result_offsets.resize(size);
result_data.reserve(data.size());
ColumnArray::Offset_t current_offset = 0;
ColumnArray::Offset_t current_result_offset = 0;
for (size_t i = 0; i < size; ++i)
{
size_t array_size = offsets[i] - current_offset;
size_t adjusted_index; /// index in array from zero
TIndex index = indices[i];
if (index > 0 && static_cast<size_t>(index) <= array_size)
adjusted_index = index - 1;
else if (index < 0 && static_cast<size_t>(-index) <= array_size)
adjusted_index = array_size + index;
else
adjusted_index = array_size; /// means no element should be taken
if (adjusted_index < array_size)
{
size_t j = (current_offset == 0 && adjusted_index == 0) ? 0 : current_offset + adjusted_index - 1;
if (builder)
builder.update(j);
ColumnArray::Offset_t string_pos = current_offset == 0 && adjusted_index == 0
? 0
: string_offsets[current_offset + adjusted_index - 1];
ColumnArray::Offset_t string_size = string_offsets[current_offset + adjusted_index] - string_pos;
result_data.resize(current_result_offset + string_size);
memcpySmallAllowReadWriteOverflow15(&result_data[current_result_offset], &data[string_pos], string_size);
current_result_offset += string_size;
result_offsets[i] = current_result_offset;
}
else
{
/// Insert empty string
result_data.resize(current_result_offset + 1);
result_data[current_result_offset] = 0;
current_result_offset += 1;
result_offsets[i] = current_result_offset;
if (builder)
builder.update();
}
current_offset = offsets[i];
}
}
};
/// Generic implementation for other nested types.
struct ArrayElementGenericImpl
{
/** Implementation for constant index.
* If negative = false - index is from beginning of array, started from 1.
* If negative = true - index is from end of array, started from -1.
*/
template <bool negative>
static void vectorConst(
const IColumn & data, const ColumnArray::Offsets_t & offsets,
const ColumnArray::Offset_t index,
IColumn & result, ArrayImpl::NullMapBuilder & builder)
{
size_t size = offsets.size();
result.reserve(size);
ColumnArray::Offset_t current_offset = 0;
for (size_t i = 0; i < size; ++i)
{
size_t array_size = offsets[i] - current_offset;
if (index < array_size)
{
size_t j = !negative ? current_offset + index : offsets[i] - index - 1;
result.insertFrom(data, j);
if (builder)
builder.update(j);
}
else
{
result.insertDefault();
if (builder)
builder.update();
}
current_offset = offsets[i];
}
}
/** Implementation for non-constant index.
*/
template <typename TIndex>
static void vector(
const IColumn & data, const ColumnArray::Offsets_t & offsets,
const PaddedPODArray<TIndex> & indices,
IColumn & result, ArrayImpl::NullMapBuilder & builder)
{
size_t size = offsets.size();
result.reserve(size);
ColumnArray::Offset_t current_offset = 0;
for (size_t i = 0; i < size; ++i)
{
size_t array_size = offsets[i] - current_offset;
TIndex index = indices[i];
if (index > 0 && static_cast<size_t>(index) <= array_size)
{
size_t j = current_offset + index - 1;
result.insertFrom(data, j);
if (builder)
builder.update(j);
}
else if (index < 0 && static_cast<size_t>(-index) <= array_size)
{
size_t j = offsets[i] + index;
result.insertFrom(data, j);
if (builder)
builder.update(j);
}
else
{
result.insertDefault();
if (builder)
builder.update();
}
current_offset = offsets[i];
}
}
};
}
FunctionPtr FunctionArrayElement::create(const Context & context)
{
return std::make_shared<FunctionArrayElement>();
}
template <typename DataType>
bool FunctionArrayElement::executeNumberConst(Block & block, const ColumnNumbers & arguments, size_t result, const Field & index,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnArray * col_array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const ColumnVector<DataType> * col_nested = typeid_cast<const ColumnVector<DataType> *>(&col_array->getData());
if (!col_nested)
return false;
auto col_res = std::make_shared<ColumnVector<DataType>>();
block.safeGetByPosition(result).column = col_res;
if (index.getType() == Field::Types::UInt64)
ArrayElementNumImpl<DataType>::template vectorConst<false>(
col_nested->getData(), col_array->getOffsets(), safeGet<UInt64>(index) - 1, col_res->getData(), builder);
else if (index.getType() == Field::Types::Int64)
ArrayElementNumImpl<DataType>::template vectorConst<true>(
col_nested->getData(), col_array->getOffsets(), -safeGet<Int64>(index) - 1, col_res->getData(), builder);
else
throw Exception("Illegal type of array index", ErrorCodes::LOGICAL_ERROR);
return true;
}
template <typename IndexType, typename DataType>
bool FunctionArrayElement::executeNumber(Block & block, const ColumnNumbers & arguments, size_t result, const PaddedPODArray<IndexType> & indices,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnArray * col_array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const ColumnVector<DataType> * col_nested = typeid_cast<const ColumnVector<DataType> *>(&col_array->getData());
if (!col_nested)
return false;
auto col_res = std::make_shared<ColumnVector<DataType>>();
block.safeGetByPosition(result).column = col_res;
ArrayElementNumImpl<DataType>::template vector<IndexType>(
col_nested->getData(), col_array->getOffsets(), indices, col_res->getData(), builder);
return true;
}
bool FunctionArrayElement::executeStringConst(Block & block, const ColumnNumbers & arguments, size_t result, const Field & index,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnArray * col_array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const ColumnString * col_nested = typeid_cast<const ColumnString *>(&col_array->getData());
if (!col_nested)
return false;
std::shared_ptr<ColumnString> col_res = std::make_shared<ColumnString>();
block.safeGetByPosition(result).column = col_res;
if (index.getType() == Field::Types::UInt64)
ArrayElementStringImpl::vectorConst<false>(
col_nested->getChars(),
col_array->getOffsets(),
col_nested->getOffsets(),
safeGet<UInt64>(index) - 1,
col_res->getChars(),
col_res->getOffsets(),
builder);
else if (index.getType() == Field::Types::Int64)
ArrayElementStringImpl::vectorConst<true>(
col_nested->getChars(),
col_array->getOffsets(),
col_nested->getOffsets(),
-safeGet<Int64>(index) - 1,
col_res->getChars(),
col_res->getOffsets(),
builder);
else
throw Exception("Illegal type of array index", ErrorCodes::LOGICAL_ERROR);
return true;
}
template <typename IndexType>
bool FunctionArrayElement::executeString(Block & block, const ColumnNumbers & arguments, size_t result, const PaddedPODArray<IndexType> & indices,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnArray * col_array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const ColumnString * col_nested = typeid_cast<const ColumnString *>(&col_array->getData());
if (!col_nested)
return false;
std::shared_ptr<ColumnString> col_res = std::make_shared<ColumnString>();
block.safeGetByPosition(result).column = col_res;
ArrayElementStringImpl::vector<IndexType>(
col_nested->getChars(),
col_array->getOffsets(),
col_nested->getOffsets(),
indices,
col_res->getChars(),
col_res->getOffsets(),
builder);
return true;
}
bool FunctionArrayElement::executeGenericConst(Block & block, const ColumnNumbers & arguments, size_t result, const Field & index,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnArray * col_array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const auto & col_nested = col_array->getData();
auto col_res = col_nested.cloneEmpty();
block.safeGetByPosition(result).column = col_res;
if (index.getType() == Field::Types::UInt64)
ArrayElementGenericImpl::vectorConst<false>(
col_nested, col_array->getOffsets(), safeGet<UInt64>(index) - 1, *col_res, builder);
else if (index.getType() == Field::Types::Int64)
ArrayElementGenericImpl::vectorConst<true>(
col_nested, col_array->getOffsets(), -safeGet<Int64>(index) - 1, *col_res, builder);
else
throw Exception("Illegal type of array index", ErrorCodes::LOGICAL_ERROR);
return true;
}
template <typename IndexType>
bool FunctionArrayElement::executeGeneric(Block & block, const ColumnNumbers & arguments, size_t result, const PaddedPODArray<IndexType> & indices,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnArray * col_array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const auto & col_nested = col_array->getData();
auto col_res = col_nested.cloneEmpty();
block.safeGetByPosition(result).column = col_res;
ArrayElementGenericImpl::vector<IndexType>(
col_nested, col_array->getOffsets(), indices, *col_res, builder);
return true;
}
bool FunctionArrayElement::executeConstConst(Block & block, const ColumnNumbers & arguments, size_t result, const Field & index,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnConstArray * col_array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const DB::Array & array = col_array->getData();
size_t array_size = array.size();
size_t real_index = 0;
if (index.getType() == Field::Types::UInt64)
real_index = safeGet<UInt64>(index) - 1;
else if (index.getType() == Field::Types::Int64)
real_index = array_size + safeGet<Int64>(index);
else
throw Exception("Illegal type of array index", ErrorCodes::LOGICAL_ERROR);
Field value = col_array->getData().at(real_index);
block.safeGetByPosition(result).column = block.safeGetByPosition(result).type->createConstColumn(
block.rows(),
value);
if (builder)
builder.update(real_index);
return true;
}
template <typename IndexType>
bool FunctionArrayElement::executeConst(Block & block, const ColumnNumbers & arguments, size_t result, const PaddedPODArray<IndexType> & indices,
ArrayImpl::NullMapBuilder & builder)
{
const ColumnConstArray * col_array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
const DB::Array & array = col_array->getData();
size_t array_size = array.size();
block.safeGetByPosition(result).column = block.safeGetByPosition(result).type->createColumn();
for (size_t i = 0; i < col_array->size(); ++i)
{
IndexType index = indices[i];
if (index > 0 && static_cast<size_t>(index) <= array_size)
{
size_t j = index - 1;
block.safeGetByPosition(result).column->insert(array[j]);
if (builder)
builder.update(j);
}
else if (index < 0 && static_cast<size_t>(-index) <= array_size)
{
size_t j = array_size + index;
block.safeGetByPosition(result).column->insert(array[j]);
if (builder)
builder.update(j);
}
else
{
block.safeGetByPosition(result).column->insertDefault();
if (builder)
builder.update();
}
}
return true;
}
template <typename IndexType>
bool FunctionArrayElement::executeArgument(Block & block, const ColumnNumbers & arguments, size_t result,
ArrayImpl::NullMapBuilder & builder)
{
auto index = typeid_cast<const ColumnVector<IndexType> *>(block.safeGetByPosition(arguments[1]).column.get());
if (!index)
return false;
const auto & index_data = index->getData();
if (builder)
builder.initSink(index_data.size());
if (!( executeNumber<IndexType, UInt8> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, UInt16> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, UInt32> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, UInt64> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, Int8> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, Int16> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, Int32> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, Int64> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, Float32> (block, arguments, result, index_data, builder)
|| executeNumber<IndexType, Float64> (block, arguments, result, index_data, builder)
|| executeConst <IndexType> (block, arguments, result, index_data, builder)
|| executeString<IndexType> (block, arguments, result, index_data, builder)
|| executeGeneric<IndexType> (block, arguments, result, index_data, builder)))
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN);
return true;
}
bool FunctionArrayElement::executeTuple(Block & block, const ColumnNumbers & arguments, size_t result)
{
ColumnArray * col_array = typeid_cast<ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!col_array)
return false;
ColumnTuple * col_nested = typeid_cast<ColumnTuple *>(&col_array->getData());
if (!col_nested)
return false;
Block & tuple_block = col_nested->getData();
size_t tuple_size = tuple_block.columns();
/** We will calculate the function for the tuple of the internals of the array.
* To do this, create a temporary block.
* It will consist of the following columns
* - the index of the array to be taken;
* - an array of the first elements of the tuples;
* - the result of taking the elements by the index for an array of the first elements of the tuples;
* - array of the second elements of the tuples;
* - result of taking elements by index for an array of second elements of tuples;
* ...
*/
Block block_of_temporary_results;
block_of_temporary_results.insert(block.safeGetByPosition(arguments[1]));
/// results of taking elements by index for arrays from each element of the tuples;
Block result_tuple_block;
for (size_t i = 0; i < tuple_size; ++i)
{
ColumnWithTypeAndName array_of_tuple_section;
array_of_tuple_section.column = std::make_shared<ColumnArray>(
tuple_block.safeGetByPosition(i).column, col_array->getOffsetsColumn());
array_of_tuple_section.type = std::make_shared<DataTypeArray>(
tuple_block.safeGetByPosition(i).type);
block_of_temporary_results.insert(array_of_tuple_section);
ColumnWithTypeAndName array_elements_of_tuple_section;
block_of_temporary_results.insert(array_elements_of_tuple_section);
executeImpl(block_of_temporary_results, ColumnNumbers{i * 2 + 1, 0}, i * 2 + 2);
result_tuple_block.insert(block_of_temporary_results.safeGetByPosition(i * 2 + 2));
}
auto col_res = std::make_shared<ColumnTuple>(result_tuple_block);
block.safeGetByPosition(result).column = col_res;
return true;
}
String FunctionArrayElement::getName() const
{
return name;
}
DataTypePtr FunctionArrayElement::getReturnTypeImpl(const DataTypes & arguments) const
{
const DataTypeArray * array_type = typeid_cast<const DataTypeArray *>(arguments[0].get());
if (!array_type)
throw Exception("First argument for function " + getName() + " must be array.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
if (!arguments[1]->isNumeric()
|| (!startsWith(arguments[1]->getName(), "UInt") && !startsWith(arguments[1]->getName(), "Int")))
throw Exception("Second argument for function " + getName() + " must have UInt or Int type.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return array_type->getNestedType();
}
void FunctionArrayElement::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
/// Check nullability.
bool is_nullable;
const ColumnArray * col_array = nullptr;
const ColumnConstArray * col_const_array = nullptr;
col_array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (col_array)
is_nullable = col_array->getData().isNullable();
else
{
col_const_array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (col_const_array)
{
const auto & arr = col_const_array->getData();
is_nullable = std::any_of(arr.begin(), arr.end(), [](const Field & f){ return f.isNull(); });
}
else
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN);
}
if (!is_nullable)
{
ArrayImpl::NullMapBuilder builder;
perform(block, arguments, result, builder);
}
else
{
/// Perform initializations.
ArrayImpl::NullMapBuilder builder;
Block source_block;
const auto & input_type = static_cast<const DataTypeNullable &>(*block.safeGetByPosition(arguments[0]).type).getNestedType();
const auto & tmp_ret_type = static_cast<const DataTypeNullable &>(*block.safeGetByPosition(result).type).getNestedType();
if (col_array)
{
const auto & nullable_col = static_cast<const ColumnNullable &>(col_array->getData());
const auto & nested_col = nullable_col.getNestedColumn();
/// Put nested_col inside a ColumnArray.
source_block =
{
{
std::make_shared<ColumnArray>(nested_col, col_array->getOffsetsColumn()),
std::make_shared<DataTypeArray>(input_type),
""
},
block.safeGetByPosition(arguments[1]),
{
nullptr,
tmp_ret_type,
""
}
};
builder.initSource(nullable_col);
}
else
{
/// Almost a copy of block.
source_block =
{
block.safeGetByPosition(arguments[0]),
block.safeGetByPosition(arguments[1]),
{
nullptr,
tmp_ret_type,
""
}
};
builder.initSource(col_const_array->getData());
}
perform(source_block, {0, 1}, 2, builder);
/// Store the result.
const ColumnWithTypeAndName & source_col = source_block.getByPosition(2);
ColumnWithTypeAndName & dest_col = block.getByPosition(result);
dest_col.column = std::make_shared<ColumnNullable>(source_col.column, builder.getNullMap());
}
}
void FunctionArrayElement::perform(Block & block, const ColumnNumbers & arguments, size_t result,
ArrayImpl::NullMapBuilder & builder)
{
if (executeTuple(block, arguments, result))
{
}
else if (!block.safeGetByPosition(arguments[1]).column->isConst())
{
if (!( executeArgument<UInt8> (block, arguments, result, builder)
|| executeArgument<UInt16> (block, arguments, result, builder)
|| executeArgument<UInt32> (block, arguments, result, builder)
|| executeArgument<UInt64> (block, arguments, result, builder)
|| executeArgument<Int8> (block, arguments, result, builder)
|| executeArgument<Int16> (block, arguments, result, builder)
|| executeArgument<Int32> (block, arguments, result, builder)
|| executeArgument<Int64> (block, arguments, result, builder)))
throw Exception("Second argument for function " + getName() + " must must have UInt or Int type.",
ErrorCodes::ILLEGAL_COLUMN);
}
else
{
Field index = (*block.safeGetByPosition(arguments[1]).column)[0];
if (builder)
builder.initSink(block.rows());
if (index == UInt64(0))
throw Exception("Array indices is 1-based", ErrorCodes::ZERO_ARRAY_OR_TUPLE_INDEX);
if (!( executeNumberConst<UInt8> (block, arguments, result, index, builder)
|| executeNumberConst<UInt16> (block, arguments, result, index, builder)
|| executeNumberConst<UInt32> (block, arguments, result, index, builder)
|| executeNumberConst<UInt64> (block, arguments, result, index, builder)
|| executeNumberConst<Int8> (block, arguments, result, index, builder)
|| executeNumberConst<Int16> (block, arguments, result, index, builder)
|| executeNumberConst<Int32> (block, arguments, result, index, builder)
|| executeNumberConst<Int64> (block, arguments, result, index, builder)
|| executeNumberConst<Float32> (block, arguments, result, index, builder)
|| executeNumberConst<Float64> (block, arguments, result, index, builder)
|| executeConstConst (block, arguments, result, index, builder)
|| executeStringConst (block, arguments, result, index, builder)
|| executeGenericConst (block, arguments, result, index, builder)))
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
}
/// Implementation of FunctionArrayEnumerate.
FunctionPtr FunctionArrayEnumerate::create(const Context & context)
{
return std::make_shared<FunctionArrayEnumerate>();
}
String FunctionArrayEnumerate::getName() const
{
return name;
}
DataTypePtr FunctionArrayEnumerate::getReturnTypeImpl(const DataTypes & arguments) const
{
const DataTypeArray * array_type = typeid_cast<const DataTypeArray *>(arguments[0].get());
if (!array_type)
throw Exception("First argument for function " + getName() + " must be an array but it has type "
+ arguments[0]->getName() + ".", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeUInt32>());
}
void FunctionArrayEnumerate::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (const ColumnArray * array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get()))
{
const ColumnArray::Offsets_t & offsets = array->getOffsets();
auto res_nested = std::make_shared<ColumnUInt32>();
auto res_array = std::make_shared<ColumnArray>(res_nested, array->getOffsetsColumn());
block.safeGetByPosition(result).column = res_array;
ColumnUInt32::Container_t & res_values = res_nested->getData();
res_values.resize(array->getData().size());
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
res_values[j] = j - prev_off + 1;
}
prev_off = off;
}
}
else if (const ColumnConstArray * array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get()))
{
const Array & values = array->getData();
Array res_values(values.size());
for (size_t i = 0; i < values.size(); ++i)
{
res_values[i] = i + 1;
}
auto res_array = std::make_shared<ColumnConstArray>(array->size(), res_values, std::make_shared<DataTypeArray>(std::make_shared<DataTypeUInt32>()));
block.safeGetByPosition(result).column = res_array;
}
else
{
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
}
/// Implementation of FunctionArrayUniq.
FunctionPtr FunctionArrayUniq::create(const Context & context) { return std::make_shared<FunctionArrayUniq>(); }
String FunctionArrayUniq::getName() const
{
return name;
}
DataTypePtr FunctionArrayUniq::getReturnTypeImpl(const DataTypes & arguments) const
{
if (arguments.size() == 0)
throw Exception("Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be at least 1.",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
for (size_t i = 0; i < arguments.size(); ++i)
{
const DataTypeArray * array_type = typeid_cast<const DataTypeArray *>(arguments[i].get());
if (!array_type)
throw Exception("All arguments for function " + getName() + " must be arrays but argument " +
toString(i + 1) + " has type " + arguments[i]->getName() + ".", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
return std::make_shared<DataTypeUInt32>();
}
void FunctionArrayUniq::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (arguments.size() == 1 && executeConst(block, arguments, result))
return;
Columns array_columns(arguments.size());
const ColumnArray::Offsets_t * offsets = nullptr;
ConstColumnPlainPtrs data_columns(arguments.size());
ConstColumnPlainPtrs original_data_columns(arguments.size());
ConstColumnPlainPtrs null_maps(arguments.size());
bool has_nullable_columns = false;
for (size_t i = 0; i < arguments.size(); ++i)
{
ColumnPtr array_ptr = block.safeGetByPosition(arguments[i]).column;
const ColumnArray * array = typeid_cast<const ColumnArray *>(array_ptr.get());
if (!array)
{
const ColumnConstArray * const_array = typeid_cast<const ColumnConstArray *>(
block.safeGetByPosition(arguments[i]).column.get());
if (!const_array)
throw Exception("Illegal column " + block.safeGetByPosition(arguments[i]).column->getName()
+ " of " + toString(i + 1) + getOrdinalSuffix(i + 1) + " argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
array_ptr = const_array->convertToFullColumn();
array = static_cast<const ColumnArray *>(array_ptr.get());
}
array_columns[i] = array_ptr;
const ColumnArray::Offsets_t & offsets_i = array->getOffsets();
if (i == 0)
offsets = &offsets_i;
else if (offsets_i != *offsets)
throw Exception("Lengths of all arrays passsed to " + getName() + " must be equal.",
ErrorCodes::SIZES_OF_ARRAYS_DOESNT_MATCH);
data_columns[i] = &array->getData();
original_data_columns[i] = data_columns[i];
if (data_columns[i]->isNullable())
{
has_nullable_columns = true;
const auto & nullable_col = static_cast<const ColumnNullable &>(*data_columns[i]);
data_columns[i] = nullable_col.getNestedColumn().get();
null_maps[i] = nullable_col.getNullMapColumn().get();
}
else
null_maps[i] = nullptr;
}
const ColumnArray * first_array = static_cast<const ColumnArray *>(array_columns[0].get());
const IColumn * first_null_map = null_maps[0];
auto res = std::make_shared<ColumnUInt32>();
block.safeGetByPosition(result).column = res;
ColumnUInt32::Container_t & res_values = res->getData();
res_values.resize(offsets->size());
if (arguments.size() == 1)
{
if (!( executeNumber<UInt8> (first_array, first_null_map, res_values)
|| executeNumber<UInt16> (first_array, first_null_map, res_values)
|| executeNumber<UInt32> (first_array, first_null_map, res_values)
|| executeNumber<UInt64> (first_array, first_null_map, res_values)
|| executeNumber<Int8> (first_array, first_null_map, res_values)
|| executeNumber<Int16> (first_array, first_null_map, res_values)
|| executeNumber<Int32> (first_array, first_null_map, res_values)
|| executeNumber<Int64> (first_array, first_null_map, res_values)
|| executeNumber<Float32> (first_array, first_null_map, res_values)
|| executeNumber<Float64> (first_array, first_null_map, res_values)
|| executeString (first_array, first_null_map, res_values)))
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
else
{
if (!execute128bit(*offsets, data_columns, null_maps, res_values, has_nullable_columns))
executeHashed(*offsets, original_data_columns, res_values);
}
}
template <typename T>
bool FunctionArrayUniq::executeNumber(const ColumnArray * array, const IColumn * null_map, ColumnUInt32::Container_t & res_values)
{
const IColumn * inner_col;
const auto & array_data = array->getData();
if (array_data.isNullable())
{
const auto & nullable_col = static_cast<const ColumnNullable &>(array_data);
inner_col = nullable_col.getNestedColumn().get();
}
else
inner_col = &array_data;
const ColumnVector<T> * nested = typeid_cast<const ColumnVector<T> *>(inner_col);
if (!nested)
return false;
const ColumnArray::Offsets_t & offsets = array->getOffsets();
const typename ColumnVector<T>::Container_t & values = nested->getData();
typedef ClearableHashSet<T, DefaultHash<T>, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(T)> > Set;
const PaddedPODArray<UInt8> * null_map_data = nullptr;
if (null_map)
null_map_data = &static_cast<const ColumnUInt8 *>(null_map)->getData();
Set set;
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
set.clear();
bool found_null = false;
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
if (null_map_data && ((*null_map_data)[j] == 1))
found_null = true;
else
set.insert(values[j]);
}
res_values[i] = set.size() + (found_null ? 1 : 0);
prev_off = off;
}
return true;
}
bool FunctionArrayUniq::executeString(const ColumnArray * array, const IColumn * null_map, ColumnUInt32::Container_t & res_values)
{
const IColumn * inner_col;
const auto & array_data = array->getData();
if (array_data.isNullable())
{
const auto & nullable_col = static_cast<const ColumnNullable &>(array_data);
inner_col = nullable_col.getNestedColumn().get();
}
else
inner_col = &array_data;
const ColumnString * nested = typeid_cast<const ColumnString *>(inner_col);
if (!nested)
return false;
const ColumnArray::Offsets_t & offsets = array->getOffsets();
typedef ClearableHashSet<StringRef, StringRefHash, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(StringRef)> > Set;
const PaddedPODArray<UInt8> * null_map_data = nullptr;
if (null_map)
null_map_data = &static_cast<const ColumnUInt8 *>(null_map)->getData();
Set set;
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
set.clear();
bool found_null = false;
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
if (null_map_data && ((*null_map_data)[j] == 1))
found_null = true;
else
set.insert(nested->getDataAt(j));
}
res_values[i] = set.size() + (found_null ? 1 : 0);
prev_off = off;
}
return true;
}
bool FunctionArrayUniq::executeConst(Block & block, const ColumnNumbers & arguments, size_t result)
{
const ColumnConstArray * array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!array)
return false;
const Array & values = array->getData();
std::set<Field> set;
for (size_t i = 0; i < values.size(); ++i)
set.insert(values[i]);
block.safeGetByPosition(result).column = std::make_shared<ColumnConstUInt32>(array->size(), set.size());
return true;
}
bool FunctionArrayUniq::execute128bit(
const ColumnArray::Offsets_t & offsets,
const ConstColumnPlainPtrs & columns,
const ConstColumnPlainPtrs & null_maps,
ColumnUInt32::Container_t & res_values,
bool has_nullable_columns)
{
size_t count = columns.size();
size_t keys_bytes = 0;
Sizes key_sizes(count);
for (size_t j = 0; j < count; ++j)
{
if (!columns[j]->isFixed())
return false;
key_sizes[j] = columns[j]->sizeOfField();
keys_bytes += key_sizes[j];
}
if (has_nullable_columns)
keys_bytes += std::tuple_size<KeysNullMap<UInt128>>::value;
if (keys_bytes > 16)
return false;
typedef ClearableHashSet<UInt128, UInt128HashCRC32, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(UInt128)> > Set;
/// Suppose that, for a given row, each of the N columns has an array whose length is M.
/// Denote arr_i each of these arrays (1 <= i <= N). Then the following is performed:
///
/// col1 ... colN
///
/// arr_1[1], ..., arr_N[1] -> pack into a binary blob b1
/// .
/// .
/// .
/// arr_1[M], ..., arr_N[M] -> pack into a binary blob bM
///
/// Each binary blob is inserted into a hash table.
///
Set set;
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
set.clear();
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
if (has_nullable_columns)
{
KeysNullMap<UInt128> bitmap{};
for (size_t i = 0; i < columns.size(); ++i)
{
if (null_maps[i] != nullptr)
{
const auto & null_map = static_cast<const ColumnUInt8 &>(*null_maps[i]).getData();
if (null_map[j] == 1)
{
size_t bucket = i / 8;
size_t offset = i % 8;
bitmap[bucket] |= UInt8(1) << offset;
}
}
}
set.insert(packFixed<UInt128>(j, count, columns, key_sizes, bitmap));
}
else
set.insert(packFixed<UInt128>(j, count, columns, key_sizes));
}
res_values[i] = set.size();
prev_off = off;
}
return true;
}
void FunctionArrayUniq::executeHashed(
const ColumnArray::Offsets_t & offsets,
const ConstColumnPlainPtrs & columns,
ColumnUInt32::Container_t & res_values)
{
size_t count = columns.size();
typedef ClearableHashSet<UInt128, UInt128TrivialHash, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(UInt128)> > Set;
Set set;
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
set.clear();
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
set.insert(hash128(j, count, columns));
res_values[i] = set.size();
prev_off = off;
}
}
/// Implementation of FunctionArrayEnumerateUniq.
FunctionPtr FunctionArrayEnumerateUniq::create(const Context & context)
{
return std::make_shared<FunctionArrayEnumerateUniq>();
}
String FunctionArrayEnumerateUniq::getName() const
{
return name;
}
DataTypePtr FunctionArrayEnumerateUniq::getReturnTypeImpl(const DataTypes & arguments) const
{
if (arguments.size() == 0)
throw Exception("Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be at least 1.",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
for (size_t i = 0; i < arguments.size(); ++i)
{
const DataTypeArray * array_type = typeid_cast<const DataTypeArray *>(arguments[i].get());
if (!array_type)
throw Exception("All arguments for function " + getName() + " must be arrays but argument " +
toString(i + 1) + " has type " + arguments[i]->getName() + ".", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
return std::make_shared<DataTypeArray>(std::make_shared<DataTypeUInt32>());
}
void FunctionArrayEnumerateUniq::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (arguments.size() == 1 && executeConst(block, arguments, result))
return;
Columns array_columns(arguments.size());
const ColumnArray::Offsets_t * offsets = nullptr;
ConstColumnPlainPtrs data_columns(arguments.size());
ConstColumnPlainPtrs original_data_columns(arguments.size());
ConstColumnPlainPtrs null_maps(arguments.size());
bool has_nullable_columns = false;
for (size_t i = 0; i < arguments.size(); ++i)
{
ColumnPtr array_ptr = block.safeGetByPosition(arguments[i]).column;
const ColumnArray * array = typeid_cast<const ColumnArray *>(array_ptr.get());
if (!array)
{
const ColumnConstArray * const_array = typeid_cast<const ColumnConstArray *>(
block.safeGetByPosition(arguments[i]).column.get());
if (!const_array)
throw Exception("Illegal column " + block.safeGetByPosition(arguments[i]).column->getName()
+ " of " + toString(i + 1) + "-th argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
array_ptr = const_array->convertToFullColumn();
array = typeid_cast<const ColumnArray *>(array_ptr.get());
}
array_columns[i] = array_ptr;
const ColumnArray::Offsets_t & offsets_i = array->getOffsets();
if (i == 0)
offsets = &offsets_i;
else if (offsets_i != *offsets)
throw Exception("Lengths of all arrays passsed to " + getName() + " must be equal.",
ErrorCodes::SIZES_OF_ARRAYS_DOESNT_MATCH);
data_columns[i] = &array->getData();
original_data_columns[i] = data_columns[i];
if (data_columns[i]->isNullable())
{
has_nullable_columns = true;
const auto & nullable_col = static_cast<const ColumnNullable &>(*data_columns[i]);
data_columns[i] = nullable_col.getNestedColumn().get();
null_maps[i] = nullable_col.getNullMapColumn().get();
}
else
null_maps[i] = nullptr;
}
const ColumnArray * first_array = typeid_cast<const ColumnArray *>(array_columns[0].get());
const IColumn * first_null_map = null_maps[0];
auto res_nested = std::make_shared<ColumnUInt32>();
auto res_array = std::make_shared<ColumnArray>(res_nested, first_array->getOffsetsColumn());
block.safeGetByPosition(result).column = res_array;
ColumnUInt32::Container_t & res_values = res_nested->getData();
if (!offsets->empty())
res_values.resize(offsets->back());
if (arguments.size() == 1)
{
if (!( executeNumber<UInt8> (first_array, first_null_map, res_values)
|| executeNumber<UInt16> (first_array, first_null_map, res_values)
|| executeNumber<UInt32> (first_array, first_null_map, res_values)
|| executeNumber<UInt64> (first_array, first_null_map, res_values)
|| executeNumber<Int8> (first_array, first_null_map, res_values)
|| executeNumber<Int16> (first_array, first_null_map, res_values)
|| executeNumber<Int32> (first_array, first_null_map, res_values)
|| executeNumber<Int64> (first_array, first_null_map, res_values)
|| executeNumber<Float32> (first_array, first_null_map, res_values)
|| executeNumber<Float64> (first_array, first_null_map, res_values)
|| executeString (first_array, first_null_map, res_values)))
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
else
{
if (!execute128bit(*offsets, data_columns, null_maps, res_values, has_nullable_columns))
executeHashed(*offsets, original_data_columns, res_values);
}
}
2016-12-02 07:15:35 +00:00
template <typename T>
bool FunctionArrayEnumerateUniq::executeNumber(const ColumnArray * array, const IColumn * null_map, ColumnUInt32::Container_t & res_values)
{
const IColumn * inner_col;
const auto & array_data = array->getData();
if (array_data.isNullable())
{
const auto & nullable_col = static_cast<const ColumnNullable &>(array_data);
inner_col = nullable_col.getNestedColumn().get();
}
else
inner_col = &array_data;
const ColumnVector<T> * nested = typeid_cast<const ColumnVector<T> *>(inner_col);
if (!nested)
return false;
const ColumnArray::Offsets_t & offsets = array->getOffsets();
const typename ColumnVector<T>::Container_t & values = nested->getData();
typedef ClearableHashMap<T, UInt32, DefaultHash<T>, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(T)> > ValuesToIndices;
const PaddedPODArray<UInt8> * null_map_data = nullptr;
if (null_map)
null_map_data = &static_cast<const ColumnUInt8 *>(null_map)->getData();
ValuesToIndices indices;
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
indices.clear();
UInt32 null_count = 0;
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
if (null_map_data && ((*null_map_data)[j] == 1))
res_values[j] = ++null_count;
else
res_values[j] = ++indices[values[j]];
}
prev_off = off;
}
return true;
}
bool FunctionArrayEnumerateUniq::executeString(const ColumnArray * array, const IColumn * null_map, ColumnUInt32::Container_t & res_values)
{
const IColumn * inner_col;
const auto & array_data = array->getData();
if (array_data.isNullable())
{
const auto & nullable_col = static_cast<const ColumnNullable &>(array_data);
inner_col = nullable_col.getNestedColumn().get();
}
else
inner_col = &array_data;
const ColumnString * nested = typeid_cast<const ColumnString *>(inner_col);
if (!nested)
return false;
const ColumnArray::Offsets_t & offsets = array->getOffsets();
size_t prev_off = 0;
typedef ClearableHashMap<StringRef, UInt32, StringRefHash, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(StringRef)> > ValuesToIndices;
const PaddedPODArray<UInt8> * null_map_data = nullptr;
if (null_map)
null_map_data = &static_cast<const ColumnUInt8 *>(null_map)->getData();
ValuesToIndices indices;
for (size_t i = 0; i < offsets.size(); ++i)
{
indices.clear();
UInt32 null_count = 0;
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
if (null_map_data && ((*null_map_data)[j] == 1))
res_values[j] = ++null_count;
else
res_values[j] = ++indices[nested->getDataAt(j)];
}
prev_off = off;
}
return true;
}
bool FunctionArrayEnumerateUniq::executeConst(Block & block, const ColumnNumbers & arguments, size_t result)
{
const ColumnConstArray * array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!array)
return false;
const Array & values = array->getData();
Array res_values(values.size());
std::map<Field, UInt32> indices;
for (size_t i = 0; i < values.size(); ++i)
{
res_values[i] = static_cast<UInt64>(++indices[values[i]]);
}
auto res_array = std::make_shared<ColumnConstArray>(array->size(), res_values, std::make_shared<DataTypeArray>(std::make_shared<DataTypeUInt32>()));
block.safeGetByPosition(result).column = res_array;
return true;
}
bool FunctionArrayEnumerateUniq::execute128bit(
const ColumnArray::Offsets_t & offsets,
const ConstColumnPlainPtrs & columns,
const ConstColumnPlainPtrs & null_maps,
ColumnUInt32::Container_t & res_values,
bool has_nullable_columns)
{
size_t count = columns.size();
size_t keys_bytes = 0;
Sizes key_sizes(count);
for (size_t j = 0; j < count; ++j)
{
if (!columns[j]->isFixed())
return false;
key_sizes[j] = columns[j]->sizeOfField();
keys_bytes += key_sizes[j];
}
if (has_nullable_columns)
keys_bytes += std::tuple_size<KeysNullMap<UInt128>>::value;
if (keys_bytes > 16)
return false;
typedef ClearableHashMap<UInt128, UInt32, UInt128HashCRC32, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(UInt128)> > ValuesToIndices;
ValuesToIndices indices;
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
indices.clear();
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
if (has_nullable_columns)
{
KeysNullMap<UInt128> bitmap{};
for (size_t i = 0; i < columns.size(); ++i)
{
if (null_maps[i] != nullptr)
{
const auto & null_map = static_cast<const ColumnUInt8 &>(*null_maps[i]).getData();
if (null_map[j] == 1)
{
size_t bucket = i / 8;
size_t offset = i % 8;
bitmap[bucket] |= UInt8(1) << offset;
}
}
}
res_values[j] = ++indices[packFixed<UInt128>(j, count, columns, key_sizes, bitmap)];
}
else
res_values[j] = ++indices[packFixed<UInt128>(j, count, columns, key_sizes)];
}
prev_off = off;
}
return true;
}
void FunctionArrayEnumerateUniq::executeHashed(
const ColumnArray::Offsets_t & offsets,
const ConstColumnPlainPtrs & columns,
ColumnUInt32::Container_t & res_values)
{
size_t count = columns.size();
typedef ClearableHashMap<UInt128, UInt32, UInt128TrivialHash, HashTableGrower<INITIAL_SIZE_DEGREE>,
HashTableAllocatorWithStackMemory<(1 << INITIAL_SIZE_DEGREE) * sizeof(UInt128)> > ValuesToIndices;
ValuesToIndices indices;
size_t prev_off = 0;
for (size_t i = 0; i < offsets.size(); ++i)
{
indices.clear();
size_t off = offsets[i];
for (size_t j = prev_off; j < off; ++j)
{
res_values[j] = ++indices[hash128(j, count, columns)];
}
prev_off = off;
}
}
/// Implementation of FunctionEmptyArrayToSingle.
FunctionPtr FunctionEmptyArrayToSingle::create(const Context & context) { return std::make_shared<FunctionEmptyArrayToSingle>(); }
String FunctionEmptyArrayToSingle::getName() const
{
return name;
}
DataTypePtr FunctionEmptyArrayToSingle::getReturnTypeImpl(const DataTypes & arguments) const
{
const DataTypeArray * array_type = typeid_cast<const DataTypeArray *>(arguments[0].get());
if (!array_type)
throw Exception("Argument for function " + getName() + " must be array.",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return arguments[0]->clone();
}
namespace
{
namespace FunctionEmptyArrayToSingleImpl
{
bool executeConst(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (const ColumnConstArray * const_array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get()))
{
if (const_array->getData().empty())
{
auto nested_type = typeid_cast<const DataTypeArray &>(*block.safeGetByPosition(arguments[0]).type).getNestedType();
block.safeGetByPosition(result).column = std::make_shared<ColumnConstArray>(
block.rows(),
Array{nested_type->getDefault()},
nested_type->clone());
}
else
block.safeGetByPosition(result).column = block.safeGetByPosition(arguments[0]).column;
return true;
}
else
return false;
}
template <typename T, bool nullable>
bool executeNumber(
const IColumn & src_data, const ColumnArray::Offsets_t & src_offsets,
IColumn & res_data_col, ColumnArray::Offsets_t & res_offsets,
const NullMap * src_null_map,
NullMap * res_null_map)
{
if (const ColumnVector<T> * src_data_concrete = typeid_cast<const ColumnVector<T> *>(&src_data))
{
const PaddedPODArray<T> & src_data = src_data_concrete->getData();
auto concrete_res_data = typeid_cast<ColumnVector<T> *>(&res_data_col);
if (concrete_res_data == nullptr)
throw Exception{"Internal error", ErrorCodes::LOGICAL_ERROR};
PaddedPODArray<T> & res_data = concrete_res_data->getData();
size_t size = src_offsets.size();
res_offsets.resize(size);
res_data.reserve(src_data.size());
if (nullable)
res_null_map->reserve(src_null_map->size());
ColumnArray::Offset_t src_prev_offset = 0;
ColumnArray::Offset_t res_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
if (src_offsets[i] != src_prev_offset)
{
size_t size_to_write = src_offsets[i] - src_prev_offset;
res_data.resize(res_prev_offset + size_to_write);
memcpy(&res_data[res_prev_offset], &src_data[src_prev_offset], size_to_write * sizeof(T));
if (nullable)
{
res_null_map->resize(res_prev_offset + size_to_write);
memcpy(&(*res_null_map)[res_prev_offset], &(*src_null_map)[src_prev_offset], size_to_write);
}
res_prev_offset += size_to_write;
res_offsets[i] = res_prev_offset;
}
else
{
res_data.push_back(T());
++res_prev_offset;
res_offsets[i] = res_prev_offset;
if (nullable)
res_null_map->push_back(1); /// Push NULL.
}
src_prev_offset = src_offsets[i];
}
return true;
}
else
return false;
}
template <bool nullable>
bool executeFixedString(
const IColumn & src_data, const ColumnArray::Offsets_t & src_offsets,
IColumn & res_data_col, ColumnArray::Offsets_t & res_offsets,
const NullMap * src_null_map,
NullMap * res_null_map)
{
if (const ColumnFixedString * src_data_concrete = typeid_cast<const ColumnFixedString *>(&src_data))
{
const size_t n = src_data_concrete->getN();
const ColumnFixedString::Chars_t & src_data = src_data_concrete->getChars();
auto concrete_res_data = typeid_cast<ColumnFixedString *>(&res_data_col);
if (concrete_res_data == nullptr)
throw Exception{"Internal error", ErrorCodes::LOGICAL_ERROR};
ColumnFixedString::Chars_t & res_data = concrete_res_data->getChars();
size_t size = src_offsets.size();
res_offsets.resize(size);
res_data.reserve(src_data.size());
if (nullable)
res_null_map->reserve(src_null_map->size());
ColumnArray::Offset_t src_prev_offset = 0;
ColumnArray::Offset_t res_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
if (src_offsets[i] != src_prev_offset)
{
size_t size_to_write = src_offsets[i] - src_prev_offset;
size_t prev_res_data_size = res_data.size();
res_data.resize(prev_res_data_size + size_to_write * n);
memcpy(&res_data[prev_res_data_size], &src_data[src_prev_offset * n], size_to_write * n);
if (nullable)
{
res_null_map->resize(res_prev_offset + size_to_write);
memcpy(&(*res_null_map)[res_prev_offset], &(*src_null_map)[src_prev_offset], size_to_write);
}
res_prev_offset += size_to_write;
res_offsets[i] = res_prev_offset;
}
else
{
size_t prev_res_data_size = res_data.size();
res_data.resize(prev_res_data_size + n);
memset(&res_data[prev_res_data_size], 0, n);
++res_prev_offset;
res_offsets[i] = res_prev_offset;
if (nullable)
res_null_map->push_back(1);
}
src_prev_offset = src_offsets[i];
}
return true;
}
else
return false;
}
template <bool nullable>
bool executeString(
const IColumn & src_data, const ColumnArray::Offsets_t & src_array_offsets,
IColumn & res_data_col, ColumnArray::Offsets_t & res_array_offsets,
const NullMap * src_null_map,
NullMap * res_null_map)
{
if (const ColumnString * src_data_concrete = typeid_cast<const ColumnString *>(&src_data))
{
const ColumnString::Offsets_t & src_string_offsets = src_data_concrete->getOffsets();
auto concrete_res_string_offsets = typeid_cast<ColumnString *>(&res_data_col);
if (concrete_res_string_offsets == nullptr)
throw Exception{"Internal error", ErrorCodes::LOGICAL_ERROR};
ColumnString::Offsets_t & res_string_offsets = concrete_res_string_offsets->getOffsets();
const ColumnString::Chars_t & src_data = src_data_concrete->getChars();
auto concrete_res_data = typeid_cast<ColumnString *>(&res_data_col);
if (concrete_res_data == nullptr)
throw Exception{"Internal error", ErrorCodes::LOGICAL_ERROR};
ColumnString::Chars_t & res_data = concrete_res_data->getChars();
size_t size = src_array_offsets.size();
res_array_offsets.resize(size);
res_string_offsets.reserve(src_string_offsets.size());
res_data.reserve(src_data.size());
if (nullable)
res_null_map->reserve(src_null_map->size());
ColumnArray::Offset_t src_array_prev_offset = 0;
ColumnArray::Offset_t res_array_prev_offset = 0;
ColumnString::Offset_t src_string_prev_offset = 0;
ColumnString::Offset_t res_string_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
if (src_array_offsets[i] != src_array_prev_offset)
{
size_t array_size = src_array_offsets[i] - src_array_prev_offset;
size_t bytes_to_copy = 0;
size_t from_string_prev_offset_local = src_string_prev_offset;
for (size_t j = 0; j < array_size; ++j)
{
size_t string_size = src_string_offsets[src_array_prev_offset + j] - from_string_prev_offset_local;
res_string_prev_offset += string_size;
res_string_offsets.push_back(res_string_prev_offset);
from_string_prev_offset_local += string_size;
bytes_to_copy += string_size;
}
size_t res_data_old_size = res_data.size();
res_data.resize(res_data_old_size + bytes_to_copy);
memcpy(&res_data[res_data_old_size], &src_data[src_string_prev_offset], bytes_to_copy);
if (nullable)
{
res_null_map->resize(res_array_prev_offset + array_size);
memcpy(&(*res_null_map)[res_array_prev_offset], &(*src_null_map)[src_array_prev_offset], array_size);
}
res_array_prev_offset += array_size;
res_array_offsets[i] = res_array_prev_offset;
}
else
{
res_data.push_back(0); /// An empty string, including zero at the end.
if (nullable)
res_null_map->push_back(1);
++res_string_prev_offset;
res_string_offsets.push_back(res_string_prev_offset);
++res_array_prev_offset;
res_array_offsets[i] = res_array_prev_offset;
}
src_array_prev_offset = src_array_offsets[i];
if (src_array_prev_offset)
src_string_prev_offset = src_string_offsets[src_array_prev_offset - 1];
}
return true;
}
else
return false;
}
template <bool nullable>
void executeGeneric(
const IColumn & src_data, const ColumnArray::Offsets_t & src_offsets,
IColumn & res_data, ColumnArray::Offsets_t & res_offsets,
const NullMap * src_null_map,
NullMap * res_null_map)
{
size_t size = src_offsets.size();
res_offsets.resize(size);
res_data.reserve(src_data.size());
if (nullable)
res_null_map->reserve(src_null_map->size());
ColumnArray::Offset_t src_prev_offset = 0;
ColumnArray::Offset_t res_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
if (src_offsets[i] != src_prev_offset)
{
size_t size_to_write = src_offsets[i] - src_prev_offset;
res_data.insertRangeFrom(src_data, src_prev_offset, size_to_write);
if (nullable)
{
res_null_map->resize(res_prev_offset + size_to_write);
memcpy(&(*res_null_map)[res_prev_offset], &(*src_null_map)[src_prev_offset], size_to_write);
}
res_prev_offset += size_to_write;
res_offsets[i] = res_prev_offset;
}
else
{
res_data.insertDefault();
++res_prev_offset;
res_offsets[i] = res_prev_offset;
if (nullable)
res_null_map->push_back(1);
}
src_prev_offset = src_offsets[i];
}
}
template <bool nullable>
void executeDispatch(
const IColumn & src_data, const ColumnArray::Offsets_t & src_array_offsets,
IColumn & res_data_col, ColumnArray::Offsets_t & res_array_offsets,
const NullMap * src_null_map,
NullMap * res_null_map)
{
if (!( executeNumber<UInt8, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<UInt16, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<UInt32, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<UInt64, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<Int8, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<Int16, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<Int32, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<Int64, nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<Float32, nullable>(src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeNumber<Float64, nullable>(src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeString<nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)
|| executeFixedString<nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map)))
executeGeneric<nullable> (src_data, src_array_offsets, res_data_col, res_array_offsets, src_null_map, res_null_map);
}
}
}
void FunctionEmptyArrayToSingle::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (FunctionEmptyArrayToSingleImpl::executeConst(block, arguments, result))
return;
const ColumnArray * array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!array)
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName() + " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
ColumnPtr res_ptr = array->cloneEmpty();
block.safeGetByPosition(result).column = res_ptr;
ColumnArray & res = static_cast<ColumnArray &>(*res_ptr);
const IColumn & src_data = array->getData();
const ColumnArray::Offsets_t & src_offsets = array->getOffsets();
IColumn & res_data = res.getData();
ColumnArray::Offsets_t & res_offsets = res.getOffsets();
const NullMap * src_null_map = nullptr;
NullMap * res_null_map = nullptr;
const IColumn * inner_col;
IColumn * inner_res_col;
bool nullable = src_data.isNullable();
if (nullable)
{
auto nullable_col = static_cast<const ColumnNullable *>(&src_data);
inner_col = nullable_col->getNestedColumn().get();
src_null_map = &nullable_col->getNullMap();
auto nullable_res_col = static_cast<ColumnNullable *>(&res_data);
inner_res_col = nullable_res_col->getNestedColumn().get();
res_null_map = &nullable_res_col->getNullMap();
}
else
{
inner_col = &src_data;
inner_res_col = &res_data;
}
if (nullable)
FunctionEmptyArrayToSingleImpl::executeDispatch<true>(*inner_col, src_offsets, *inner_res_col, res_offsets, src_null_map, res_null_map);
else
FunctionEmptyArrayToSingleImpl::executeDispatch<false>(*inner_col, src_offsets, *inner_res_col, res_offsets, src_null_map, res_null_map);
}
/// Implementation of FunctionRange.
2016-12-10 06:22:03 +00:00
String FunctionRange::getName() const
{
return name;
2016-12-10 06:22:03 +00:00
}
DataTypePtr FunctionRange::getReturnTypeImpl(const DataTypes & arguments) const
{
const auto arg = arguments.front().get();
if (!typeid_cast<const DataTypeUInt8 *>(arg) &&
!typeid_cast<const DataTypeUInt16 *>(arg) &&
!typeid_cast<const DataTypeUInt32 *>(arg) &
!typeid_cast<const DataTypeUInt64 *>(arg))
{
throw Exception{
"Illegal type " + arg->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT
};
}
return std::make_shared<DataTypeArray>(arg->clone());
}
template <typename T>
bool FunctionRange::executeInternal(Block & block, const IColumn * const arg, const size_t result)
{
if (const auto in = typeid_cast<const ColumnVector<T> *>(arg))
{
const auto & in_data = in->getData();
const auto total_values = std::accumulate(std::begin(in_data), std::end(in_data), std::size_t{},
[this] (const std::size_t lhs, const std::size_t rhs) {
const auto sum = lhs + rhs;
if (sum < lhs)
throw Exception{
"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND
};
return sum;
});
if (total_values > max_elements)
throw Exception{
"A call to function " + getName() + " would produce " + std::to_string(total_values) +
" array elements, which is greater than the allowed maximum of " + std::to_string(max_elements),
ErrorCodes::ARGUMENT_OUT_OF_BOUND
};
const auto data_col = std::make_shared<ColumnVector<T>>(total_values);
const auto out = std::make_shared<ColumnArray>(
data_col,
std::make_shared<ColumnArray::ColumnOffsets_t>(in->size()));
block.safeGetByPosition(result).column = out;
auto & out_data = data_col->getData();
auto & out_offsets = out->getOffsets();
IColumn::Offset_t offset{};
for (const auto i : ext::range(0, in->size()))
{
std::copy(ext::make_range_iterator(T{}), ext::make_range_iterator(in_data[i]), &out_data[offset]);
offset += in_data[i];
out_offsets[i] = offset;
}
return true;
}
else if (const auto in = typeid_cast<const ColumnConst<T> *>(arg))
{
const auto & in_data = in->getData();
if ((in_data != 0) && (in->size() > (std::numeric_limits<std::size_t>::max() / in_data)))
throw Exception{
"A call to function " + getName() + " overflows, investigate the values of arguments you are passing",
ErrorCodes::ARGUMENT_OUT_OF_BOUND
};
const std::size_t total_values = in->size() * in_data;
if (total_values > max_elements)
throw Exception{
"A call to function " + getName() + " would produce " + std::to_string(total_values) +
" array elements, which is greater than the allowed maximum of " + std::to_string(max_elements),
ErrorCodes::ARGUMENT_OUT_OF_BOUND
};
const auto data_col = std::make_shared<ColumnVector<T>>(total_values);
const auto out = std::make_shared<ColumnArray>(
data_col,
std::make_shared<ColumnArray::ColumnOffsets_t>(in->size()));
block.safeGetByPosition(result).column = out;
auto & out_data = data_col->getData();
auto & out_offsets = out->getOffsets();
IColumn::Offset_t offset{};
for (const auto i : ext::range(0, in->size()))
{
std::copy(ext::make_range_iterator(T{}), ext::make_range_iterator(in_data), &out_data[offset]);
offset += in_data;
out_offsets[i] = offset;
}
return true;
}
else
return false;
}
void FunctionRange::executeImpl(Block & block, const ColumnNumbers & arguments, const size_t result)
{
const auto col = block.safeGetByPosition(arguments[0]).column.get();
if (!executeInternal<UInt8>(block, col, result) &&
!executeInternal<UInt16>(block, col, result) &&
!executeInternal<UInt32>(block, col, result) &&
!executeInternal<UInt64>(block, col, result))
{
throw Exception{
"Illegal column " + col->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN
};
}
}
/// Implementation of FunctionArrayReverse.
FunctionPtr FunctionArrayReverse::create(const Context & context)
{
return std::make_shared<FunctionArrayReverse>();
}
String FunctionArrayReverse::getName() const
{
return name;
}
DataTypePtr FunctionArrayReverse::getReturnTypeImpl(const DataTypes & arguments) const
{
const DataTypeArray * array_type = typeid_cast<const DataTypeArray *>(arguments[0].get());
if (!array_type)
throw Exception("Argument for function " + getName() + " must be array.",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return arguments[0]->clone();
}
void FunctionArrayReverse::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (executeConst(block, arguments, result))
return;
const ColumnArray * array = typeid_cast<const ColumnArray *>(block.safeGetByPosition(arguments[0]).column.get());
if (!array)
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName() + " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
ColumnPtr res_ptr = array->cloneEmpty();
block.safeGetByPosition(result).column = res_ptr;
ColumnArray & res = static_cast<ColumnArray &>(*res_ptr);
const IColumn & src_data = array->getData();
const ColumnArray::Offsets_t & offsets = array->getOffsets();
IColumn & res_data = res.getData();
res.getOffsetsColumn() = array->getOffsetsColumn();
const ColumnNullable * nullable_col = nullptr;
ColumnNullable * nullable_res_col = nullptr;
const IColumn * inner_col;
IColumn * inner_res_col;
if (src_data.isNullable())
{
nullable_col = static_cast<const ColumnNullable *>(&src_data);
inner_col = nullable_col->getNestedColumn().get();
nullable_res_col = static_cast<ColumnNullable *>(&res_data);
inner_res_col = nullable_res_col->getNestedColumn().get();
}
else
{
inner_col = &src_data;
inner_res_col = &res_data;
}
if (!( executeNumber<UInt8> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<UInt16> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<UInt32> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<UInt64> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<Int8> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<Int16> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<Int32> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<Int64> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<Float32> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeNumber<Float64> (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeString (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)
|| executeFixedString (*inner_col, offsets, *inner_res_col, nullable_col, nullable_res_col)))
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
bool FunctionArrayReverse::executeConst(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (const ColumnConstArray * const_array = typeid_cast<const ColumnConstArray *>(block.safeGetByPosition(arguments[0]).column.get()))
{
const Array & arr = const_array->getData();
size_t size = arr.size();
Array res(size);
for (size_t i = 0; i < size; ++i)
res[i] = arr[size - i - 1];
block.safeGetByPosition(result).column = std::make_shared<ColumnConstArray>(
block.rows(),
res,
block.safeGetByPosition(arguments[0]).type->clone());
return true;
}
else
return false;
}
template <typename T>
bool FunctionArrayReverse::executeNumber(
const IColumn & src_data, const ColumnArray::Offsets_t & src_offsets,
IColumn & res_data_col,
const ColumnNullable * nullable_col,
ColumnNullable * nullable_res_col)
{
auto do_reverse = [](const auto & src_data, const auto & src_offsets, auto & res_data)
{
size_t size = src_offsets.size();
ColumnArray::Offset_t src_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
const auto * src = &src_data[src_prev_offset];
const auto * src_end = &src_data[src_offsets[i]];
if (src == src_end)
continue;
auto dst = &res_data[src_offsets[i] - 1];
while (src < src_end)
{
*dst = *src;
++src;
--dst;
}
src_prev_offset = src_offsets[i];
}
};
if (const ColumnVector<T> * src_data_concrete = typeid_cast<const ColumnVector<T> *>(&src_data))
{
const PaddedPODArray<T> & src_data = src_data_concrete->getData();
PaddedPODArray<T> & res_data = typeid_cast<ColumnVector<T> &>(res_data_col).getData();
res_data.resize(src_data.size());
do_reverse(src_data, src_offsets, res_data);
if ((nullable_col != nullptr) && (nullable_res_col != nullptr))
{
/// Make a reverted null map.
const auto & src_null_map = static_cast<const ColumnUInt8 &>(*nullable_col->getNullMapColumn()).getData();
auto & res_null_map = static_cast<ColumnUInt8 &>(*nullable_res_col->getNullMapColumn()).getData();
res_null_map.resize(src_data.size());
do_reverse(src_null_map, src_offsets, res_null_map);
}
return true;
}
else
return false;
}
bool FunctionArrayReverse::executeFixedString(
const IColumn & src_data, const ColumnArray::Offsets_t & src_offsets,
IColumn & res_data_col,
const ColumnNullable * nullable_col,
ColumnNullable * nullable_res_col)
{
if (const ColumnFixedString * src_data_concrete = typeid_cast<const ColumnFixedString *>(&src_data))
{
const size_t n = src_data_concrete->getN();
const ColumnFixedString::Chars_t & src_data = src_data_concrete->getChars();
ColumnFixedString::Chars_t & res_data = typeid_cast<ColumnFixedString &>(res_data_col).getChars();
size_t size = src_offsets.size();
res_data.resize(src_data.size());
ColumnArray::Offset_t src_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
const UInt8 * src = &src_data[src_prev_offset * n];
const UInt8 * src_end = &src_data[src_offsets[i] * n];
if (src == src_end)
continue;
UInt8 * dst = &res_data[src_offsets[i] * n - n];
while (src < src_end)
{
/// NOTE: memcpySmallAllowReadWriteOverflow15 doesn't work correctly here.
memcpy(dst, src, n);
src += n;
dst -= n;
}
src_prev_offset = src_offsets[i];
}
if ((nullable_col != nullptr) && (nullable_res_col != nullptr))
{
/// Make a reverted null map.
const auto & src_null_map = static_cast<const ColumnUInt8 &>(*nullable_col->getNullMapColumn()).getData();
auto & res_null_map = static_cast<ColumnUInt8 &>(*nullable_res_col->getNullMapColumn()).getData();
res_null_map.resize(src_null_map.size());
ColumnArray::Offset_t src_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
const UInt8 * src = &src_null_map[src_prev_offset];
const UInt8 * src_end = &src_null_map[src_offsets[i]];
if (src == src_end)
continue;
UInt8 * dst = &res_null_map[src_offsets[i] - 1];
while (src < src_end)
{
*dst = *src;
++src;
--dst;
}
src_prev_offset = src_offsets[i];
}
}
return true;
}
else
return false;
}
bool FunctionArrayReverse::executeString(
const IColumn & src_data, const ColumnArray::Offsets_t & src_array_offsets,
IColumn & res_data_col,
const ColumnNullable * nullable_col,
ColumnNullable * nullable_res_col)
{
if (const ColumnString * src_data_concrete = typeid_cast<const ColumnString *>(&src_data))
{
const ColumnString::Offsets_t & src_string_offsets = src_data_concrete->getOffsets();
ColumnString::Offsets_t & res_string_offsets = typeid_cast<ColumnString &>(res_data_col).getOffsets();
const ColumnString::Chars_t & src_data = src_data_concrete->getChars();
ColumnString::Chars_t & res_data = typeid_cast<ColumnString &>(res_data_col).getChars();
size_t size = src_array_offsets.size();
res_string_offsets.resize(src_string_offsets.size());
res_data.resize(src_data.size());
ColumnArray::Offset_t src_array_prev_offset = 0;
ColumnString::Offset_t res_string_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
if (src_array_offsets[i] != src_array_prev_offset)
{
size_t array_size = src_array_offsets[i] - src_array_prev_offset;
for (size_t j = 0; j < array_size; ++j)
{
size_t j_reversed = array_size - j - 1;
auto src_pos = src_array_prev_offset + j_reversed == 0 ? 0 : src_string_offsets[src_array_prev_offset + j_reversed - 1];
size_t string_size = src_string_offsets[src_array_prev_offset + j_reversed] - src_pos;
memcpySmallAllowReadWriteOverflow15(&res_data[res_string_prev_offset], &src_data[src_pos], string_size);
res_string_prev_offset += string_size;
res_string_offsets[src_array_prev_offset + j] = res_string_prev_offset;
}
}
src_array_prev_offset = src_array_offsets[i];
}
if ((nullable_col != nullptr) && (nullable_res_col != nullptr))
{
/// Make a reverted null map.
const auto & src_null_map = static_cast<const ColumnUInt8 &>(*nullable_col->getNullMapColumn()).getData();
auto & res_null_map = static_cast<ColumnUInt8 &>(*nullable_res_col->getNullMapColumn()).getData();
res_null_map.resize(src_string_offsets.size());
size_t size = src_string_offsets.size();
ColumnArray::Offset_t src_prev_offset = 0;
for (size_t i = 0; i < size; ++i)
{
const auto * src = &src_null_map[src_prev_offset];
const auto * src_end = &src_null_map[src_array_offsets[i]];
if (src == src_end)
continue;
auto dst = &res_null_map[src_array_offsets[i] - 1];
while (src < src_end)
{
*dst = *src;
++src;
--dst;
}
src_prev_offset = src_array_offsets[i];
}
}
return true;
}
else
return false;
}
/// Implementation of FunctionArrayReduce.
FunctionPtr FunctionArrayReduce::create(const Context & context)
{
return std::make_shared<FunctionArrayReduce>();
}
String FunctionArrayReduce::getName() const
{
return name;
}
void FunctionArrayReduce::getReturnTypeAndPrerequisitesImpl(
const ColumnsWithTypeAndName & arguments,
DataTypePtr & out_return_type,
std::vector<ExpressionAction> & out_prerequisites)
{
/// The first argument is a constant string with the name of the aggregate function (possibly with parameters in parentheses, for example: "quantile(0.99)").
if (arguments.size() < 2)
throw Exception("Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be at least 2.",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
const ColumnConstString * aggregate_function_name_column = typeid_cast<const ColumnConstString *>(arguments[0].column.get());
if (!aggregate_function_name_column)
throw Exception("First argument for function " + getName() + " must be constant string: name of aggregate function.",
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
DataTypes argument_types(arguments.size() - 1);
for (size_t i = 1, size = arguments.size(); i < size; ++i)
{
const DataTypeArray * arg = typeid_cast<const DataTypeArray *>(arguments[i].type.get());
if (!arg)
throw Exception("Argument " + toString(i) + " for function " + getName() + " must be an array but it has type "
+ arguments[i].type->getName() + ".", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
argument_types[i - 1] = arg->getNestedType()->clone();
}
if (!aggregate_function)
{
const String & aggregate_function_name_with_params = aggregate_function_name_column->getData();
if (aggregate_function_name_with_params.empty())
throw Exception("First argument for function " + getName() + " (name of aggregate function) cannot be empty.",
ErrorCodes::BAD_ARGUMENTS);
bool has_parameters = ')' == aggregate_function_name_with_params.back();
String aggregate_function_name = aggregate_function_name_with_params;
String parameters;
Array params_row;
if (has_parameters)
{
size_t pos = aggregate_function_name_with_params.find('(');
if (pos == std::string::npos || pos + 2 >= aggregate_function_name_with_params.size())
throw Exception("First argument for function " + getName() + " doesn't look like aggregate function name.",
ErrorCodes::BAD_ARGUMENTS);
aggregate_function_name = aggregate_function_name_with_params.substr(0, pos);
parameters = aggregate_function_name_with_params.substr(pos + 1, aggregate_function_name_with_params.size() - pos - 2);
if (aggregate_function_name.empty())
throw Exception("First argument for function " + getName() + " doesn't look like aggregate function name.",
ErrorCodes::BAD_ARGUMENTS);
ParserExpressionList params_parser(false);
ASTPtr args_ast = parseQuery(params_parser,
parameters.data(), parameters.data() + parameters.size(),
"parameters of aggregate function");
ASTExpressionList & args_list = typeid_cast<ASTExpressionList &>(*args_ast);
if (args_list.children.empty())
throw Exception("Incorrect list of parameters to aggregate function "
+ aggregate_function_name, ErrorCodes::BAD_ARGUMENTS);
params_row.reserve(args_list.children.size());
for (const auto & child : args_list.children)
{
const ASTLiteral * lit = typeid_cast<const ASTLiteral *>(child.get());
if (!lit)
throw Exception("Parameters to aggregate functions must be literals",
ErrorCodes::PARAMETERS_TO_AGGREGATE_FUNCTIONS_MUST_BE_LITERALS);
params_row.push_back(lit->value);
}
}
aggregate_function = AggregateFunctionFactory::instance().get(aggregate_function_name, argument_types);
if (has_parameters)
aggregate_function->setParameters(params_row);
aggregate_function->setArguments(argument_types);
}
out_return_type = aggregate_function->getReturnType();
}
2016-12-02 07:15:35 +00:00
void FunctionArrayReduce::executeImpl(Block & block, const ColumnNumbers & arguments, size_t result)
{
IAggregateFunction & agg_func = *aggregate_function.get();
std::unique_ptr<char[]> place_holder { new char[agg_func.sizeOfData()] };
AggregateDataPtr place = place_holder.get();
std::unique_ptr<Arena> arena = agg_func.allocatesMemoryInArena() ? std::make_unique<Arena>() : nullptr;
size_t rows = block.rows();
/// Aggregate functions do not support constant columns. Therefore, we materialize them.
std::vector<ColumnPtr> materialized_columns;
std::vector<const IColumn *> aggregate_arguments_vec(arguments.size() - 1);
bool is_const = true;
for (size_t i = 0, size = arguments.size() - 1; i < size; ++i)
{
const IColumn * col = block.getByPosition(arguments[i + 1]).column.get();
if (const ColumnArray * arr = typeid_cast<const ColumnArray *>(col))
{
aggregate_arguments_vec[i] = arr->getDataPtr().get();
is_const = false;
}
else if (const ColumnConstArray * arr = typeid_cast<const ColumnConstArray *>(col))
{
materialized_columns.emplace_back(arr->convertToFullColumn());
aggregate_arguments_vec[i] = typeid_cast<const ColumnArray &>(*materialized_columns.back().get()).getDataPtr().get();
}
else
throw Exception("Illegal column " + col->getName() + " as argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN);
}
const IColumn ** aggregate_arguments = aggregate_arguments_vec.data();
const ColumnArray::Offsets_t & offsets = typeid_cast<const ColumnArray &>(!materialized_columns.empty()
? *materialized_columns.front().get()
: *block.getByPosition(arguments[1]).column.get()).getOffsets();
ColumnPtr result_holder = block.safeGetByPosition(result).type->createColumn();
IColumn & res_col = *result_holder;
/// AggregateFunction's states should be inserted into column using specific way
auto res_col_aggregate_function = typeid_cast<ColumnAggregateFunction *>(&res_col);
if (!res_col_aggregate_function && agg_func.isState())
throw Exception("State function " + agg_func.getName() + " inserts results into non-state column "
+ block.safeGetByPosition(result).type->getName(), ErrorCodes::ILLEGAL_COLUMN);
ColumnArray::Offset_t current_offset = 0;
for (size_t i = 0; i < rows; ++i)
{
agg_func.create(place);
ColumnArray::Offset_t next_offset = offsets[i];
try
{
for (size_t j = current_offset; j < next_offset; ++j)
agg_func.add(place, aggregate_arguments, j, arena.get());
if (!res_col_aggregate_function)
agg_func.insertResultInto(place, res_col);
else
res_col_aggregate_function->insertFrom(place);
}
catch (...)
{
agg_func.destroy(place);
throw;
}
agg_func.destroy(place);
current_offset = next_offset;
}
if (!is_const)
{
block.safeGetByPosition(result).column = result_holder;
}
else
{
block.safeGetByPosition(result).column = block.safeGetByPosition(result).type->createConstColumn(rows, res_col[0]);
}
}
2016-12-02 07:15:35 +00:00
void registerFunctionsArray(FunctionFactory & factory)
{
factory.registerFunction<FunctionArray>();
factory.registerFunction<FunctionArrayElement>();
factory.registerFunction<FunctionHas>();
factory.registerFunction<FunctionIndexOf>();
factory.registerFunction<FunctionCountEqual>();
factory.registerFunction<FunctionArrayEnumerate>();
factory.registerFunction<FunctionArrayEnumerateUniq>();
factory.registerFunction<FunctionArrayUniq>();
factory.registerFunction<FunctionEmptyArrayUInt8>();
factory.registerFunction<FunctionEmptyArrayUInt16>();
factory.registerFunction<FunctionEmptyArrayUInt32>();
factory.registerFunction<FunctionEmptyArrayUInt64>();
factory.registerFunction<FunctionEmptyArrayInt8>();
factory.registerFunction<FunctionEmptyArrayInt16>();
factory.registerFunction<FunctionEmptyArrayInt32>();
factory.registerFunction<FunctionEmptyArrayInt64>();
factory.registerFunction<FunctionEmptyArrayFloat32>();
factory.registerFunction<FunctionEmptyArrayFloat64>();
factory.registerFunction<FunctionEmptyArrayDate>();
factory.registerFunction<FunctionEmptyArrayDateTime>();
factory.registerFunction<FunctionEmptyArrayString>();
factory.registerFunction<FunctionEmptyArrayToSingle>();
factory.registerFunction<FunctionRange>();
factory.registerFunction<FunctionArrayReduce>();
factory.registerFunction<FunctionArrayReverse>();
}
}