ClickHouse/docs/en/getting-started/example-datasets/environmental-sensors.md

173 lines
7.6 KiB
Markdown
Raw Normal View History

2023-03-29 01:46:29 +00:00
---
slug: /en/getting-started/example-datasets/environmental-sensors
sidebar_label: Environmental Sensors Data
---
2023-03-29 03:51:19 +00:00
# Environmental Sensors Data
2023-03-29 01:46:29 +00:00
[Sensor.Community](https://sensor.community/en/) is a contributors-driven global sensor network that creates Open Environmental Data. The data is collected from sensors all over the globe. Anyone can purchase a sensor and place it wherever they like. The APIs to download the data is in [GitHub](https://github.com/opendata-stuttgart/meta/wiki/APIs) and the data is freely available under the [Database Contents License (DbCL)](https://opendatacommons.org/licenses/dbcl/1-0/).
:::important
The dataset has over 20 billion records, so be careful just copying-and-pasting the commands below unless your resources can handle that type of volume. The commands below were executed on a **Production** instance of [ClickHouse Cloud](https://clickhouse.cloud).
:::
1. The data is in S3, so we can use the `s3` table function to create a table from the files. We can also query the data in place. Let's look at a few rows before attempting to insert it into ClickHouse:
```sql
SELECT *
FROM s3(
'https://clickhouse-public-datasets.s3.eu-central-1.amazonaws.com/sensors/monthly/2019-06_bmp180.csv.zst',
'CSVWithNames'
)
LIMIT 10
SETTINGS format_csv_delimiter = ';';
```
The data is in CSV files but uses a semi-colon for the delimiter. The rows look like:
```response
┌─sensor_id─┬─sensor_type─┬─location─┬────lat─┬────lon─┬─timestamp───────────┬──pressure─┬─altitude─┬─pressure_sealevel─┬─temperature─┐
│ 9119 │ BMP180 │ 4594 │ 50.994 │ 7.126 │ 2019-06-01T00:00:00 │ 101471 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 19.9 │
│ 21210 │ BMP180 │ 10762 │ 42.206 │ 25.326 │ 2019-06-01T00:00:00 │ 99525 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 19.3 │
│ 19660 │ BMP180 │ 9978 │ 52.434 │ 17.056 │ 2019-06-01T00:00:04 │ 101570 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 15.3 │
│ 12126 │ BMP180 │ 6126 │ 57.908 │ 16.49 │ 2019-06-01T00:00:05 │ 101802.56 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 8.07 │
│ 15845 │ BMP180 │ 8022 │ 52.498 │ 13.466 │ 2019-06-01T00:00:05 │ 101878 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 23 │
│ 16415 │ BMP180 │ 8316 │ 49.312 │ 6.744 │ 2019-06-01T00:00:06 │ 100176 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 14.7 │
│ 7389 │ BMP180 │ 3735 │ 50.136 │ 11.062 │ 2019-06-01T00:00:06 │ 98905 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 12.1 │
│ 13199 │ BMP180 │ 6664 │ 52.514 │ 13.44 │ 2019-06-01T00:00:07 │ 101855.54 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 19.74 │
│ 12753 │ BMP180 │ 6440 │ 44.616 │ 2.032 │ 2019-06-01T00:00:07 │ 99475 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 17 │
2023-05-30 13:50:58 +00:00
│ 16956 │ BMP180 │ 8594 │ 52.052 │ 8.354 │ 2019-06-01T00:00:08 │ 101322 │ ᴺᵁᴸᴸ │ ᴺᵁᴸᴸ │ 17.2 │
└───────────┴─────────────┴──────────┴────────┴────────┴─────────────────────┴───────────┴──────────┴───────────────────┴─────────────┘
2023-03-29 01:46:29 +00:00
```
2. We will use the following `MergeTree` table to store the data in ClickHouse:
```sql
CREATE TABLE sensors
(
sensor_id UInt16,
sensor_type Enum('BME280', 'BMP180', 'BMP280', 'DHT22', 'DS18B20', 'HPM', 'HTU21D', 'PMS1003', 'PMS3003', 'PMS5003', 'PMS6003', 'PMS7003', 'PPD42NS', 'SDS011'),
location UInt32,
lat Float32,
lon Float32,
timestamp DateTime,
P1 Float32,
P2 Float32,
P0 Float32,
durP1 Float32,
ratioP1 Float32,
durP2 Float32,
ratioP2 Float32,
pressure Float32,
altitude Float32,
pressure_sealevel Float32,
temperature Float32,
humidity Float32,
date Date MATERIALIZED toDate(timestamp)
)
ENGINE = MergeTree
ORDER BY (timestamp, sensor_id);
```
3. ClickHouse Cloud services have a cluster named `default`. We will use the `s3Cluster` table function, which reads S3 files in parallel from the nodes in your cluster. (If you do not have a cluster, just use the `s3` function and remove the cluster name.)
This query will take a while - it's about 1.67T of data uncompressed:
```sql
INSERT INTO sensors
SELECT *
FROM s3Cluster(
'default',
'https://clickhouse-public-datasets.s3.amazonaws.com/sensors/monthly/*.csv.zst',
'CSVWithNames',
$$ sensor_id UInt16,
sensor_type String,
location UInt32,
lat Float32,
lon Float32,
timestamp DateTime,
P1 Float32,
P2 Float32,
P0 Float32,
durP1 Float32,
ratioP1 Float32,
durP2 Float32,
ratioP2 Float32,
pressure Float32,
altitude Float32,
pressure_sealevel Float32,
temperature Float32,
humidity Float32 $$
)
SETTINGS
format_csv_delimiter = ';',
input_format_allow_errors_ratio = '0.5',
input_format_allow_errors_num = 10000,
input_format_parallel_parsing = 0,
date_time_input_format = 'best_effort',
max_insert_threads = 32,
parallel_distributed_insert_select = 1;
```
2023-03-29 02:32:10 +00:00
Here is the response - showing the number of rows and the speed of processing. It is input at a rate of over 6M rows per second!
2023-03-29 01:46:29 +00:00
```response
2023-03-29 02:32:10 +00:00
0 rows in set. Elapsed: 3419.330 sec. Processed 20.69 billion rows, 1.67 TB (6.05 million rows/s., 488.52 MB/s.)
2023-03-29 01:46:29 +00:00
```
4. Let's see how much storage disk is needed for the `sensors` table:
```sql
SELECT
disk_name,
formatReadableSize(sum(data_compressed_bytes) AS size) AS compressed,
formatReadableSize(sum(data_uncompressed_bytes) AS usize) AS uncompressed,
round(usize / size, 2) AS compr_rate,
sum(rows) AS rows,
count() AS part_count
FROM system.parts
WHERE (active = 1) AND (table = 'sensors')
GROUP BY
disk_name
ORDER BY size DESC;
```
2023-03-29 11:59:43 +00:00
The 1.67T is compressed down to 310 GiB, and there are 20.69 billion rows:
2023-03-29 02:32:10 +00:00
```response
┌─disk_name─┬─compressed─┬─uncompressed─┬─compr_rate─┬────────rows─┬─part_count─┐
│ s3disk │ 310.21 GiB │ 1.30 TiB │ 4.29 │ 20693971809 │ 472 │
└───────────┴────────────┴──────────────┴────────────┴─────────────┴────────────┘
```
2023-03-29 01:46:29 +00:00
5. Let's analyze the data now that it's in ClickHouse. Notice the quantity of data increases over time as more sensors are deployed:
```sql
SELECT
date,
count()
FROM sensors
GROUP BY date
ORDER BY date ASC;
```
We can create a chart in the SQL Console to visualize the results:
2023-03-29 02:32:10 +00:00
![Number of events per day](./images/sensors_01.png)
2023-03-29 01:46:29 +00:00
2023-03-29 03:11:28 +00:00
6. This query counts the number of overly hot and humid days:
```sql
WITH
toYYYYMMDD(timestamp) AS day
SELECT day, count() FROM sensors
2023-03-29 03:27:23 +00:00
WHERE temperature >= 40 AND temperature <= 50 AND humidity >= 90
2023-03-29 03:11:28 +00:00
GROUP BY day
ORDER BY day asc;
```
Here's a visualization of the result:
![Hot and humid days](./images/sensors_02.png)
2023-03-29 01:46:29 +00:00