ClickHouse/src/AggregateFunctions/AggregateFunctionRankCorrelation.h

102 lines
2.8 KiB
C++
Raw Normal View History

#pragma once
#include <AggregateFunctions/IAggregateFunction.h>
2020-11-11 22:52:07 +00:00
#include <AggregateFunctions/StatCommon.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnTuple.h>
#include <Common/assert_cast.h>
2020-11-11 14:36:14 +00:00
#include <Common/PODArray_fwd.h>
2020-09-15 09:55:57 +00:00
#include <common/types.h>
#include <DataTypes/DataTypesDecimal.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypeArray.h>
#include <Common/ArenaAllocator.h>
namespace DB
{
2020-11-11 22:52:07 +00:00
struct RankCorrelationData : public StatisticalSample<Float64, Float64>
{
2020-11-11 22:52:07 +00:00
Float64 getResult() {
RanksArray ranks_x;
std::tie(ranks_x, std::ignore) = computeRanksAndTieCorrection(this->x);
RanksArray ranks_y;
std::tie(ranks_y, std::ignore) = computeRanksAndTieCorrection(this->y);
2020-11-11 22:52:07 +00:00
/// In our case sizes of both samples are equal.
const auto size = this->size_x;
2020-11-11 14:36:14 +00:00
2020-11-11 22:52:07 +00:00
/// Count d^2 sum
Float64 answer = 0;
for (size_t j = 0; j < size; ++j)
answer += (ranks_x[j] - ranks_y[j]) * (ranks_x[j] - ranks_y[j]);
2020-11-11 22:52:07 +00:00
answer *= 6;
answer /= size * (size * size - 1);
answer = 1 - answer;
return answer;
}
};
class AggregateFunctionRankCorrelation :
2020-11-11 22:52:07 +00:00
public IAggregateFunctionDataHelper<RankCorrelationData, AggregateFunctionRankCorrelation>
{
public:
explicit AggregateFunctionRankCorrelation(const DataTypes & arguments)
2020-11-11 22:52:07 +00:00
:IAggregateFunctionDataHelper<RankCorrelationData, AggregateFunctionRankCorrelation> ({arguments}, {})
{}
String getName() const override
{
return "rankCorr";
}
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeNumber<Float64>>();
}
void add(AggregateDataPtr place, const IColumn ** columns, size_t row_num, Arena * arena) const override
{
2020-11-11 22:52:07 +00:00
Float64 new_x = columns[0]->getFloat64(row_num);
Float64 new_y = columns[1]->getFloat64(row_num);
this->data(place).addX(new_x, arena);
this->data(place).addY(new_y, arena);
}
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
{
auto & a = this->data(place);
auto & b = this->data(rhs);
2020-11-11 22:52:07 +00:00
a.merge(b, arena);
}
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
{
2020-11-11 22:52:07 +00:00
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena * arena) const override
{
2020-11-11 22:52:07 +00:00
this->data(place).read(buf, arena);
}
2020-11-11 14:36:14 +00:00
void insertResultInto(AggregateDataPtr place, IColumn & to, Arena *) const override
{
2020-11-11 22:52:07 +00:00
auto answer = this->data(place).getResult();
auto & column = static_cast<ColumnVector<Float64> &>(to);
column.getData().push_back(answer);
}
};
};