ClickHouse/docs/en/sql-reference/aggregate-functions/reference/summap.md

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

83 lines
3.1 KiB
Markdown
Raw Normal View History

---
2022-08-28 14:53:34 +00:00
slug: /en/sql-reference/aggregate-functions/reference/summap
sidebar_position: 198
---
2022-06-02 10:55:18 +00:00
# sumMap
2024-04-27 18:58:34 +00:00
Totals a `value` array according to the keys specified in the `key` array. Returns a tuple of two arrays: keys in sorted order, and values summed for the corresponding keys without overflow.
2023-06-04 20:19:07 +00:00
**Syntax**
- `sumMap(key <Array>, value <Array>)` [Array type](../../data-types/array.md).
- `sumMap(Tuple(key <Array>, value <Array>))` [Tuple type](../../data-types/tuple.md).
2023-06-04 19:18:53 +00:00
Alias: `sumMappedArrays`.
**Arguments**
- `key`: [Array](../../data-types/array.md) of keys.
- `value`: [Array](../../data-types/array.md) of values.
2024-04-29 09:27:44 +00:00
Passing a tuple of key and value arrays is a synonym to passing separately an array of keys and an array of values.
:::note
The number of elements in `key` and `value` must be the same for each row that is totaled.
:::
2024-04-27 18:58:34 +00:00
**Returned Value**
- Returns a tuple of two arrays: keys in sorted order, and values summed for the corresponding keys.
**Example**
First we create a table called `sum_map`, and insert some data into it. Arrays of keys and values are stored separately as a column called `statusMap` of [Nested](../../data-types/nested-data-structures/index.md) type, and together as a column called `statusMapTuple` of [tuple](../../data-types/tuple.md) type to illustrate the use of the two different syntaxes of this function described above.
Query:
``` sql
CREATE TABLE sum_map(
date Date,
timeslot DateTime,
statusMap Nested(
status UInt16,
requests UInt64
),
statusMapTuple Tuple(Array(Int32), Array(Int32))
) ENGINE = Log;
```
```sql
INSERT INTO sum_map VALUES
('2000-01-01', '2000-01-01 00:00:00', [1, 2, 3], [10, 10, 10], ([1, 2, 3], [10, 10, 10])),
('2000-01-01', '2000-01-01 00:00:00', [3, 4, 5], [10, 10, 10], ([3, 4, 5], [10, 10, 10])),
('2000-01-01', '2000-01-01 00:01:00', [4, 5, 6], [10, 10, 10], ([4, 5, 6], [10, 10, 10])),
('2000-01-01', '2000-01-01 00:01:00', [6, 7, 8], [10, 10, 10], ([6, 7, 8], [10, 10, 10]));
```
Next, we query the table using the `sumMap` function, making use of both array and tuple type syntaxes:
Query:
``` sql
SELECT
timeslot,
sumMap(statusMap.status, statusMap.requests),
sumMap(statusMapTuple)
FROM sum_map
GROUP BY timeslot
```
Result:
``` text
┌────────────timeslot─┬─sumMap(statusMap.status, statusMap.requests)─┬─sumMap(statusMapTuple)─────────┐
│ 2000-01-01 00:00:00 │ ([1,2,3,4,5],[10,10,20,10,10]) │ ([1,2,3,4,5],[10,10,20,10,10]) │
│ 2000-01-01 00:01:00 │ ([4,5,6,7,8],[10,10,20,10,10]) │ ([4,5,6,7,8],[10,10,20,10,10]) │
└─────────────────────┴──────────────────────────────────────────────┴────────────────────────────────┘
```
2023-06-04 19:18:53 +00:00
**See Also**
2024-04-27 18:58:34 +00:00
- [Map combinator for Map datatype](../combinators.md#-map)
2024-04-27 18:58:34 +00:00
- [sumMapWithOverflow](../reference/summapwithoverflow.md)