2020-04-02 13:48:14 +00:00
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "Target.h"
|
|
|
|
|
2020-04-05 12:01:33 +00:00
|
|
|
#include <Functions/IFunctionImpl.h>
|
|
|
|
|
|
|
|
#include <random>
|
|
|
|
|
2020-04-02 13:48:14 +00:00
|
|
|
namespace DB::DynamicTarget
|
|
|
|
{
|
|
|
|
|
2020-04-05 12:01:33 +00:00
|
|
|
// TODO(dakovalkov): This is copied and pasted struct from LZ4_decompress_faster.h
|
2020-04-02 13:48:14 +00:00
|
|
|
|
2020-04-05 12:01:33 +00:00
|
|
|
/** When decompressing uniform sequence of blocks (for example, blocks from one file),
|
|
|
|
* you can pass single PerformanceStatistics object to subsequent invocations of 'decompress' method.
|
|
|
|
* It will accumulate statistics and use it as a feedback to choose best specialization of algorithm at runtime.
|
|
|
|
* One PerformanceStatistics object cannot be used concurrently from different threads.
|
|
|
|
*/
|
|
|
|
struct PerformanceStatistics
|
2020-04-02 13:48:14 +00:00
|
|
|
{
|
2020-04-05 12:01:33 +00:00
|
|
|
struct Element
|
2020-04-02 13:48:14 +00:00
|
|
|
{
|
2020-04-05 12:01:33 +00:00
|
|
|
double count = 0;
|
|
|
|
double sum = 0;
|
|
|
|
|
|
|
|
double adjustedCount() const
|
|
|
|
{
|
|
|
|
return count - NUM_INVOCATIONS_TO_THROW_OFF;
|
|
|
|
}
|
|
|
|
|
|
|
|
double mean() const
|
|
|
|
{
|
|
|
|
return sum / adjustedCount();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// For better convergence, we don't use proper estimate of stddev.
|
|
|
|
/// We want to eventually separate between two algorithms even in case
|
|
|
|
/// when there is no statistical significant difference between them.
|
|
|
|
double sigma() const
|
|
|
|
{
|
|
|
|
return mean() / sqrt(adjustedCount());
|
2020-04-02 13:48:14 +00:00
|
|
|
}
|
2020-04-05 12:01:33 +00:00
|
|
|
|
|
|
|
void update(double seconds, double bytes)
|
|
|
|
{
|
|
|
|
++count;
|
|
|
|
|
|
|
|
if (count > NUM_INVOCATIONS_TO_THROW_OFF)
|
|
|
|
sum += seconds / bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
double sample(pcg64 & stat_rng) const
|
|
|
|
{
|
|
|
|
/// If there is a variant with not enough statistics, always choose it.
|
|
|
|
/// And in that case prefer variant with less number of invocations.
|
|
|
|
|
|
|
|
if (adjustedCount() < 2)
|
|
|
|
return adjustedCount() - 1;
|
|
|
|
else
|
|
|
|
return std::normal_distribution<>(mean(), sigma())(stat_rng);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Cold invocations may be affected by additional memory latencies. Don't take first invocations into account.
|
|
|
|
static constexpr double NUM_INVOCATIONS_TO_THROW_OFF = 2;
|
|
|
|
|
|
|
|
/// How to select method to run.
|
|
|
|
/// -1 - automatically, based on statistics (default);
|
|
|
|
/// -2 - choose methods in round robin fashion (for performance testing).
|
|
|
|
/// >= 0 - always choose specified method (for performance testing);
|
|
|
|
ssize_t choose_method = -1;
|
|
|
|
|
|
|
|
std::vector<Element> data;
|
|
|
|
|
|
|
|
/// It's Ok that generator is not seeded.
|
|
|
|
pcg64 rng;
|
|
|
|
|
|
|
|
/// To select from different algorithms we use a kind of "bandits" algorithm.
|
|
|
|
/// Sample random values from estimated normal distributions and choose the minimal.
|
|
|
|
size_t select()
|
|
|
|
{
|
|
|
|
if (choose_method < 0)
|
|
|
|
{
|
|
|
|
std::vector<double> samples(data.size());
|
|
|
|
for (size_t i = 0; i < data.size(); ++i)
|
|
|
|
samples[i] = choose_method == -1
|
|
|
|
? data[i].sample(rng)
|
|
|
|
: data[i].adjustedCount();
|
|
|
|
|
|
|
|
return std::min_element(samples.begin(), samples.end()) - samples.begin();
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return choose_method;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t size() {
|
|
|
|
return data.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
void emplace_back() {
|
|
|
|
data.emplace_back();
|
|
|
|
}
|
|
|
|
|
|
|
|
PerformanceStatistics() {}
|
|
|
|
PerformanceStatistics(ssize_t choose_method_) : choose_method(choose_method_) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
// template <typename... Params>
|
|
|
|
// class PerformanceExecutor
|
|
|
|
// {
|
|
|
|
// public:
|
|
|
|
// using Executor = std::function<void(Params...)>;
|
|
|
|
// // Should register all executors before execute
|
|
|
|
// void registerExecutor(Executor executor)
|
|
|
|
// {
|
|
|
|
// executors.emplace_back(std::move(executor));
|
|
|
|
// }
|
|
|
|
|
|
|
|
// // The performance of the execution is time / weight.
|
|
|
|
// // Weight is usualy the
|
|
|
|
// void execute(int weight, Params... params)
|
|
|
|
// {
|
|
|
|
// if (executors_.empty()) {
|
|
|
|
// throw "There are no realizations for current Arch";
|
|
|
|
// }
|
|
|
|
// int impl = 0;
|
|
|
|
// // TODO: choose implementation.
|
|
|
|
// executors_[impl](params...);
|
|
|
|
// }
|
|
|
|
|
|
|
|
// private:
|
|
|
|
// std::vector<Executor> executors;
|
|
|
|
// PerformanceStatistics statistics;
|
|
|
|
// };
|
|
|
|
|
2020-04-05 13:14:59 +00:00
|
|
|
template <typename DefaultFunction>
|
|
|
|
class FunctionDynamicAdaptor : public DefaultFunction
|
2020-04-05 12:01:33 +00:00
|
|
|
{
|
|
|
|
public:
|
2020-04-05 13:14:59 +00:00
|
|
|
template <typename ...Params>
|
|
|
|
FunctionDynamicAdaptor(const Context & context_, Params ...params)
|
|
|
|
: DefaultFunction(params...)
|
|
|
|
, context(context_)
|
2020-04-05 12:01:33 +00:00
|
|
|
{
|
2020-04-05 13:14:59 +00:00
|
|
|
statistics.emplace_back();
|
2020-04-05 12:01:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
virtual void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override
|
|
|
|
{
|
|
|
|
int id = statistics.select();
|
|
|
|
// TODO(dakovalkov): measure time and change statistics.
|
2020-04-05 13:14:59 +00:00
|
|
|
if (id == 0) {
|
|
|
|
DefaultFunction::executeImpl(block, arguments, result, input_rows_count);
|
|
|
|
} else {
|
|
|
|
impls[id - 1]->executeImpl(block, arguments, result, input_rows_count);
|
|
|
|
}
|
2020-04-05 12:01:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
/*
|
|
|
|
* Register implementation of the function.
|
|
|
|
*/
|
|
|
|
template<typename Function>
|
|
|
|
void registerImplementation(TargetArch arch = TargetArch::Default) {
|
|
|
|
if (arch == TargetArch::Default || IsArchSupported(arch)) {
|
|
|
|
impls.emplace_back(Function::create(context));
|
|
|
|
statistics.emplace_back();
|
2020-04-02 13:48:14 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
2020-04-05 12:01:33 +00:00
|
|
|
const Context & context;
|
2020-04-05 13:14:59 +00:00
|
|
|
std::vector<FunctionPtr> impls; // Alternative implementations.
|
2020-04-05 12:01:33 +00:00
|
|
|
PerformanceStatistics statistics;
|
2020-04-02 13:48:14 +00:00
|
|
|
};
|
|
|
|
|
2020-04-05 13:14:59 +00:00
|
|
|
// TODO(dakovalkov): May be it's better to delete this macros and write every function explicitly for better readability.
|
2020-04-05 12:01:33 +00:00
|
|
|
#define DECLARE_STANDART_TARGET_ADAPTOR(Function) \
|
2020-04-05 13:14:59 +00:00
|
|
|
class Function : public FunctionDynamicAdaptor<TargetSpecific::Default::Function> \
|
2020-04-05 12:01:33 +00:00
|
|
|
{ \
|
|
|
|
public: \
|
2020-04-05 13:14:59 +00:00
|
|
|
Function(const Context & context) : FunctionDynamicAdaptor(context) \
|
2020-04-05 12:01:33 +00:00
|
|
|
{ \
|
|
|
|
registerImplementation<TargetSpecific::SSE4::Function>(TargetArch::SSE4); \
|
|
|
|
registerImplementation<TargetSpecific::AVX::Function>(TargetArch::AVX); \
|
|
|
|
registerImplementation<TargetSpecific::AVX2::Function>(TargetArch::AVX2); \
|
|
|
|
registerImplementation<TargetSpecific::AVX512::Function>(TargetArch::AVX512); \
|
|
|
|
} \
|
|
|
|
static FunctionPtr create(const Context & context) \
|
|
|
|
{ \
|
|
|
|
return std::make_shared<Function>(context); \
|
|
|
|
} \
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace DB::DynamicTarget
|